CSE 322 Winter 2006

Homework Assignment \# 4

Due Date: Wednesday, February 8 (at the beginning of class)

1. (30 points) Give regular expressions that generate the following languages. In all cases, the alphabet is $\Sigma=\{0,1\}$.
a. $\{\mathrm{w} \mid \mathrm{w}$ contains the substring 10$\}$
b. $\{\mathrm{w} \mid \mathrm{w}$ contains the substring 10 and ends in 0$\}$
c. the set of all strings except the empty string and the string 0
d. $\{\mathrm{w} \mid \mathrm{w}$ contains an odd number of 0 's or at least two 1 's $\}$
e. $\{\mathrm{w} \mid \mathrm{w}$ contains an odd number of 0 's and at least two 1 's $\}$
f. $\{\mathrm{w} \mid \mathrm{w}$ contains a 1 among the last six positions $\}$ (note: if length of w is less than 6 , then w should contain a 1 at any position)
2. (15 points) Describe the language accepted by the following regular expression using the $\{\mathrm{w} \mid \ldots$.$\} notation and then convert the regular expression to an NFA$ using the procedure discussed in class (see lecture slides and pages 66-67 in either edition of the text): $0((0 \cup 1)(0 \cup 1))^{*} \cup(0 \cup 1)^{*} 1 \cup \varepsilon$
3. (15 points) Convert the DFA in Exercise 1.21 (b) in the textbook (2 ${ }^{\text {nd }}$ edition) (Exercise 1.16 (b) in the $1^{\text {st }}$ edition) to a regular expression using the GNFA procedure discussed in class (see lecture slides and pages 69-73 in either edition of the text).
4. (30 points) Show that the following languages over $\Sigma=\{0,1\}$ are not regular:
a. $\quad\left\{1^{n} w \mid w \in \Sigma^{*}, n \geq 0\right.$, and the length of w is at most $\left.n\right\}$
b. $\left\{1^{\mathrm{i}} 01^{\mathrm{j}} 01^{\mathrm{k}} \mid \mathrm{i}, \mathrm{j} \geq 1\right.$ and $\left.\mathrm{k}=\mathrm{i}+\mathrm{j}\right\}$
c. $\left\{\mathrm{w} \mid \mathrm{w} \in \Sigma^{*}\right.$ and $\left.\mathrm{w}=\mathrm{w}^{\mathrm{R}}\right\}$ where R denotes the string reversal operation.
5. (10 points) Problem 1.40 (b) in the $2^{\text {nd }}$ edition of the textbook (Problem 1.32 (b) in the $1^{\text {st }}$ edition).
