CSE 322 Winter 2006

Homework Assignment # 4

Due Date: Wednesday, February 8 (at the *beginning* of class)

- 1. (30 points) Give regular expressions that generate the following languages. In all cases, the alphabet is $\Sigma = \{0,1\}$.
 - a. $\{w \mid w \text{ contains the substring } 10\}$
 - b. $\{w \mid w \text{ contains the substring 10 and ends in 0}\}$
 - c. the set of all strings except the empty string and the string 0
 - d. $\{w \mid w \text{ contains an odd number of } 0$'s <u>or</u> at least two 1's}
 - e. $\{w \mid w \text{ contains an odd number of 0's } and at least two 1's\}$
 - f. {w | w contains a 1 among the last six positions} (note: if length of w is less than 6, then w should contain a 1 at any position)
- (15 points) Describe the language accepted by the following regular expression using the {w |} notation and then convert the regular expression to an NFA using the procedure discussed in class (see lecture slides and pages 66-67 in either edition of the text): 0((0 ∪ 1)(0 ∪ 1))* ∪ (0 ∪ 1)*1 ∪ ε
- 3. (15 points) Convert the DFA in Exercise 1.21 (b) in the textbook (2nd edition) (Exercise 1.16 (b) in the 1st edition) to a regular expression using the GNFA procedure discussed in class (see lecture slides and pages 69-73 in either edition of the text).
- 4. (30 points) Show that the following languages over $\Sigma = \{0,1\}$ are <u>not regular</u>:
 - a. $\{1^n w \mid w \in \Sigma^*, n \ge 0, \text{ and the length of } w \text{ is at most } n\}$
 - b. $\{1^i 0 1^j 0 1^k \mid i, j \ge 1 \text{ and } k = i + j\}$
 - c. $\{w \mid w \in \Sigma^* \text{ and } w = w^R\}$ where R denotes the string reversal operation.
- 5. (10 points) Problem 1.40 (b) in the 2nd edition of the textbook (Problem 1.32 (b) in the 1st edition).