CSE 322 Winter 2006

Homework Assignment \# 1

Due Date: Friday, January 13 (at the beginning of class)

1. (25 points) Write formal descriptions of the following sets:

Examples: Set containing $1,10,100=\{1,10,100\}$
Set containing all even integers $=\{n \mid n=2 m$ for some $m \in Z\}$
a. The set containing all prime numbers between 20 and 30
b. The set containing all odd integers less than 100
c. The set containing the empty string and all binary strings of length 10
d. The set of all binary strings of length 2 or more that begin and end in the same symbol
e. The set of all strings over the alphabet $\{\mathrm{a}, \mathrm{b}, \ldots, \mathrm{z}\}$ that contain the word "huskies" as a substring but not the word "cougars"
2. (25 points) Let A be the set of integers between -10 and $10 \underline{\text { divisible by } 6 \text {. Let } \mathrm{B}}$ be the set of integers between -7 and 7 divisible by 3 .
a. Which of the following statements is/are true: $A \subseteq B, B \subseteq A, A \cap B \neq \varnothing$
b. Prove or disprove: $\mathrm{A}-\mathrm{B}=\mathrm{B}-\mathrm{A}$ (Recall: $\mathrm{B}-\mathrm{A}=\mathrm{B} \cap \overline{\mathrm{A}}$)
c. Prove or disprove: $\mathrm{A} \times \mathrm{B}=\mathrm{B} \times \mathrm{A}$
d. What is A^{3} ? (List all the elements)
e. What is the power set of A ?
3. (25 points) Prove, using the definition of set equality, that for all sets A, B, and C : $((\mathrm{A}-\mathrm{B}) \cup(\mathrm{A}-\mathrm{C}))=\mathrm{A}-(\mathrm{B} \cap \mathrm{C})$
4. (25 points) Let Σ be an alphabet and let $x, y \in \Sigma^{*}$. Show that $(x y)^{R}=y^{R} x^{R}$ where R denotes the string reversal operation (hint: use induction on the length of y).

