Today's Topic:
 Up close and personal with Turing Machines

Can we augment the computing power of Turing machines with various accessories?

Various Types of TMs

- Multi-Tape TMs: TM with k tapes and k heads
$\Rightarrow \delta: \mathrm{Q} \times \Gamma^{\mathrm{k}} \rightarrow \mathrm{Q} \times \Gamma^{\mathrm{k}} \times\{\mathrm{L}, \mathrm{R}\}^{\mathrm{k}}$
$\Rightarrow \delta\left(q_{i}, a_{1}, \ldots, a_{k}\right)=\left(q_{j}, b_{1}, \ldots, b_{k}, L, R, \ldots, L\right)$
- Nondeterministic TMs (NTMs)
$\Rightarrow \delta: Q \times \Gamma \rightarrow \operatorname{Pow}(Q \times \Gamma \times\{L, R\})$
$\Rightarrow \delta\left(\mathrm{q}_{\mathrm{i}}, \mathrm{a}\right)=\left\{\left(\mathrm{q}_{1}, \mathrm{~b}, \mathrm{R}\right),\left(\mathrm{q}_{2}, \mathrm{c}, \mathrm{L}\right), \ldots,\left(\mathrm{q}_{\mathrm{m}}, \mathrm{d}, \mathrm{R}\right)\right\}$
- Enumerator TM for L: Prints all strings in L (in any order, possibly with repetitions) and only the strings in L
- Other types: TM with Two-way infinite tape, TM with multiple heads on a single tape, 2D infinite tape TM, Random Access Memory (RAM) TM, etc.

Surprise!

All TMs are born equal...

- Each of the preceding TMs is equivalent to the standard TM \Rightarrow They recognize the same set of languages (the Turingrecognizable languages)
- Proof idea: Simulate the "deviant" TM using a standard TM
- Example 1: Multi-tape TM on a standard TM
\Rightarrow Represent k tapes sequentially on 1 tape using separators \# \Rightarrow Use new symbol \underline{a} to denote a head currently on symbol a
$01 \ldots \ldots . .$.

(See text for details)

Example 2: Simulating Nondeterminism

\rightarrow Any nondeterministic TM N can be simulated by a deterministic TM M \Rightarrow NTMs: $\delta: \mathrm{Q} \times \Gamma \rightarrow \operatorname{Pow}(\mathrm{Q} \times \Gamma \times\{\mathrm{L}, \mathrm{R}\})$ \Leftrightarrow No ε transitions but can simulate them by reading and writing same symbol
$\Rightarrow \mathrm{N}$ accepts w iff there is at least 1 path in N's tree for w ending in $q_{\text {ACC }}$

- General proof idea: Simulate each branch sequentially
\Rightarrow Proof idea 1: Use depth first search? No, might go deep into an infinite branch and never explore other branches!
\Rightarrow Proof idea 2: Use breadth first search Explore all branches at depth n before $n+1$

Simulating Nondeterminism: Details, Details

- Use a 3-tape DTM M for breadthfirst traversal of N's tree on w:
\Rightarrow Tape 1 keeps the input string w
\Rightarrow Tape 2 stores N's tape during simulation along 1 path (given by tape 3) up to a particular depth, starting with w
\Rightarrow Tape 3 stores current path number E.g. $\varepsilon=$ root node q_{0} $213=$ path made up of $3^{\text {rd }}$ child of $1^{\text {st }}$ child of $2^{\text {nd }}$ child of root
- See text for more details

What about other types of computing machines?

\star Enumerator TMs (or Printer Machines)

- TMs with 2-Way Infinite Tape
- TMs with Multiple Read/Write Heads
- TMs with 2-Dimensional Tape
- TMs with Random Access Memory (RAM)

The Church-Turing Thesis

- Various definitions of "algorithms" were shown to be equivalent in the 1930s
- Church-Turing Thesis: "The intuitive notion of algorithms equals Turing machine algorithms"
\Rightarrow Turing machines serve as a precise formal model for the intuitive notion of an algorithm
- "Any computation on a digital computer is equivalent to computation in a Turing machine"

