
1R. Rao, CSE 322

What’s on our platter today?

✦ Cliff’s notes for equivalence of CFGs and PDAs
L = L(G) for some CFG G ⇒ L = L(M) for some PDA M
L = L(M) for some PDA M ⇒ L = L(G) for some CFG G

✦ Pumping Lemma (one last time)
Statement of Pumping Lemma for CFLs
Application: Showing a given L is not a CFL

✦ Turing machines!

2R. Rao, CSE 322

Review: From CFGs to PDAs

✦ L is a CFL ⇒ L = L(M) for some PDA M
✦ Proof Summary:

L is a CFL means L = L(G) for some CFG G = (V, Σ, R, S)
Construct PDA M = (Q, Σ, Γ, δ, q0, {qacc})
M has only 4 main states (plus a few more for pushing strings)
Q = {q0, q1, q2, qacc} ∪ E where E are states used in 2 below
δ has 4 components:

1. Init. Stack: δ(q0, ε, ε) = {(q1, $)} and δ(q1, ε, ε) = {(q2, S)}
2. Push & generate strings: δ(q2, ε, A) = {(q2, w)} for A→w in R
3. Pop & match to input: δ(q2, a,a) = {(q2, ε)}
4. Accept if stack empty: δ(q2, ε, $) = {(qacc, ε)}

✦ Can prove by induction: w ∈ L iff w ∈ L(M)

3R. Rao, CSE 322

From PDAs to CFGs

✦ L = L(M) for some PDA M ⇒ L = L(G) for some CFG G

✦ Proof Summary: Simulate M’s computation using a CFG
First, simplify M: 1. Only 1 accept state, 2. M empties stack
before accepting, 3. Each transition either Push or Pop, not
both or neither. Let M = (Q, Σ, Γ, δ, q0, {qacc})
Construct grammar G = (V, Σ, R, S)
Basic Idea: Define variables Apq for simulating M
Apq generates all strings w such that w takes M from state p
with empty stack to state q with empty stack
Then, Aq0qacc generates all strings w accepted by M

4R. Rao, CSE 322

From PDAs to CFGs (cont.)

✦ L = L(M) for some PDA M ⇒ L = L(G) for some CFG G

✦ Proof (cont.)
Construct grammar G = (V, Σ, R, S) where
V = {Apq | p, q ∈ Q)
S = Aq0qacc

R = {Apq → aArsb | p r s q}
∪ {Apq → Apr Arq | p, q, r ∈ Q}
∪ {Aqq → ε | q ∈ Q}

✦ See text for proof by induction: w ∈ L(M) iff w ∈ L(G)
✦ Try to get G from M where L(M) = {0n1n | n ≥ 1}

a, ε → c b, c → εArs

5R. Rao, CSE 322

Pumping Lemma for CFLs

✦ Intuition: If L is CF, then some CFG G produces strings in L
If some string in L is very long, it will have a very tall parse tree
If a parse tree is taller than the number of distinct variables in G,
then some variable A repeats ⇒ A will have at least two sub-trees
We can pump up the original string by replacing A’s smaller sub-
tree with larger, and pump down by replacing larger with smaller

✦ Pumping Lemma for CFLs in all its glory:
If L is a CFL, then there is a number p (the “pumping length”) such that
for all strings s in L such that |s| ≥ p, there exist u, v, x, y, and z such that
s = uvxyz and:

1. uvixyiz ∈ L for all i ≥ 0, and
2. |vy| ≥ 1, and
3. |vxy| ≤ p.

Here we
go again!s

v y

6R. Rao, CSE 322

Why is the PL useful?

✦ Can use the pumping lemma to show a language L is not
context-free

5 steps for a proof by contradiction:
1. Assume L is a CFL.
2. Let p be the pumping length for L given by the pumping

lemma for CFLs.
3. Choose cleverly an s in L of length at least p, such that
4. For all possible ways of decomposing s into uvxyz,

where |vy| ≥ 1 and |vxy| ≤ p,
5. Choose an i ≥ 0 such that uvixyiz is not in L.

✦ Example (on board): Show the following is not a CFL
L = {0n1n0n | n ≥ 0}

Yawn…yes,
why indeed?

7R. Rao, CSE 322

Example 2

✦ Show L = {0n | n is a prime number} is not a CFL
1. Assume L is a CFL.
2. Let p be the pumping length for L given by the pumping

lemma for CFLs.
3. Let s = 0n where n is a prime ≥ p
4. Consider all possible ways of decomposing s into uvxyz, where

|vy| ≥ 1 and |vxy| ≤ p.
Then, vy = 0r and uxz = 0q where r + q = n and r ≥ 1

5. We need an i ≥ 0 such that uvixyiz = 0ir+q is not in L.
(i = 0 won’t work because q could be prime: e.g. 2 + 17 = 19)
Choose i = (q + 2 + 2r). Then, ir + q = qr + 2r +2r2+q =
q(r+1)+2r(r+1) = (q+2r)(r+1) = not prime (since r ≥ 1).

So, 0ir+q is not in L ⇒ contradicts pumping lemma. L is not a CFL.

Oh boy…
Jolly good

8R. Rao, CSE 322

Two surprising results about CFLs

✦ CFLs are not closed under intersection
Proof: L1 = {0n1n0m | n, m ≥ 0} and L2 = {0m1n0n | n, m ≥ 0}
are both CFLs but L1 ∩ L2 = {0n1n0n | n ≥ 0} is not a CFL.

✦ CFLs are not closed under complementation
Proof by contradiction:
Suppose CFLs are closed under complement.

Then, for L1, L2 above, L1 ∪ L2 must be a CFL (since CFLs are
closed under ∪).

But, L1 ∪ L2 = L1 ∩ L2 (by de Morgan’s law).
L1 ∩ L2 = {0n1n0n | n ≥ 0} is not a CFL ⇒ contradiction.
Therefore CFLs are not closed under complementation.

9R. Rao, CSE 322

Can we make PDAs more powerful?

✦ PDA = NFA +

What if we allow arbitrary
reads/writes to the stack instead
of only push and pop?

10R. Rao, CSE 322

Enter…the Turing Machine

