Beyond the Regular world...

- ◆ Are there languages that are *not* regular?
- ◆ Idea: If a language violates a property obeyed by all regular languages, it cannot be regular!
 - **→ Pumping Lemma** for showing *non-regularity* of languages

I love ze pumping lemma!

R. Rao, CSE 322

The Pumping Lemma for Regular Languages

- What is it?
 - ❖ A statement ("lemma") that is true for all regular languages
- ♦ Why is it useful?
 - Can be used to show that certain languages are not regular
 - ⇒ <u>How?</u> By contradiction: Assume the given language is regular and show that it does not satisfy the pumping lemma

More about the Pumping Lemma

- What is the idea behind it?
 - ❖ Any regular language L has a DFA M that recognizes it
 - ⇒ If M has p states and accepts a string of length ≥ p, the sequence of states M goes through must contain a cycle (repetition of a state) due to the pigeonhole principle! Thus:
 - ⇒ All strings that make M go through this cycle 0 or any number of times are also accepted by M and should be in L.

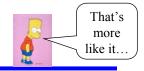
R. Rao, CSE 322

Formal Statement of the Pumping Lemma

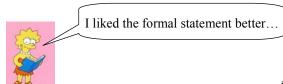
- **Pumping Lemma**: If L is regular, then \exists p such that \forall s in L with $|s| \ge p$, \exists x, y, z with s = xyz and:
 - 1. $xy^iz \in L \ \forall \ i \ge 0$, and
 - 2. $|y| \ge 1$, and
 - 3. $|xy| \le p$.
- Proof on board...(also in the textbook)
- Proved in 1961 by Bar-Hillel, Peries and Shamir

R. Rao, CSE 322 4

Pumping Lemma in Plain English



- ◆ Let L be a regular language and let p = "pumping length" = no. of states of a DFA accepting L
- ♦ Then, any string s in L of length \geq p can be expressed as s = xyz where:
 - \Rightarrow y is not empty (y is the cycle)
 - \Rightarrow $|xy| \le p$ (cycle occurs within p state transitions), and
 - \Rightarrow any "pumped" string xy^iz is also in L for all $i \ge 0$ (go through the cycle 0 or more times)



R. Rao, CSE 322

5

Using The Pumping Lemma

- ◆ In-Class Examples: Using the pumping lemma to show a language L is *not regular*
 - ⇒ 5 steps for a proof by contradiction:
 - 1. Assume L is regular.
 - 2. Let p be the pumping length given by the pumping lemma.
 - 3. Choose cleverly an s in L of length at least p, such that
 - 4. For *all ways* of decomposing *s* into xyz, where $|xy| \le p$ and *y* is not null,
 - 5. There is an $i \ge 0$ such that xy^iz is not in L.

Proving non-regularity as a Two-Person game

- An alternate view: Think of it as a game between you and an opponent (JC):
 - 1. You: Assume L is regular
 - 2. JC: Chooses some value p
 - **3.** You: Choose cleverly an s in L of length $\geq p$
 - **4. JC**: Breaks *s* into some *xyz*, where $|xy| \le p$ and *y* is not null,
 - **5. You**: Need to choose an $i \ge 0$ such that xy^iz is not in L (in order to win (the prize of non-regularity)!)

(Note: Your *i* should work for all *xyz* that JC chooses, given your *s*)

R. Rao, CSE 322

Proving Non-Regularity using the Pumping Lemma

- ♦ Examples: Show the following are not regular
 - \Rightarrow L₁ = {0ⁿ1ⁿ | n \ge 0} over the alphabet {0, 1}
 - \Rightarrow L₂ = {w | w contains equal number of 0s and 1s} over the alphabet {0, 1}
 - ⇒ ADD = {a=b+c | a, b, c are binary numbers and a is the sum of b and c} over the alphabet {0, 1, =, +}
 - \Rightarrow PRIMES = $\{0^n \mid n \text{ is prime}\}\ \text{over the alphabet } \{0\}$

Da Pumpin' Lemma

Hear it on my new album: Dig dat funky DFA

(Orig. lyrics: Harry Mairson)

Any regular language L has a magic numba pAnd any long-enuff word s in L has da followin' propa'ty: Amongst its first p symbols is a segment you can find Whoz repetition or omission leaves s amongst its kind.

So if ya find a language *L* which fails dis acid test, And some long word ya pump becomes distinct from all da rest, By contradiction you have shown dat language *L* is not A regular homie, resilient to the damage you've caused.

But if, upon the other hand, s stays within its L, Then either L is regulah, or else you chose not well. For s is xyz, where y cannot be empty, And y must come before da $p+I^{th}$ symbol is read.

R. Rao, CSE 322 Based on: http://www.cs.b

Based on: http://www.cs.brandeis.edu/~mairson/poems/node1.html 9

If $\{0^n1^n \mid n \ge 0\}$ is not Regular, what is it?

Enter...the world of Grammars