
1R. Rao, CSE 322

Are There Languages That Are Not Even Recognizable?

✦ Recall from last class:
ATM = {<M,w> | M is a TM and M accepts w}
AH = {<M,w> | M is a TM and M halts on w}

✦ ATM and AH are undecidable but Turing-recognizable
Are there languages that are not even Turing-
recognizable?

✦ What happens if a language A and its complement A are
both Turing-recognizable?

2R. Rao, CSE 322

Are There Languages That Are Not Even Recognizable?

✦ What happens if both A and A are Turing-recognizable?
There exist TMs M1 and M2 that recognize A and A
Can construct a decider for A! On input w:

1. Simulate M1 and M2 on w one step at a time, alternating
between them.

2. If M1 accepts, then ACC w and halt; if M2 accepts, REJ w and
halt.

✦ Thm: A and A are both Turing-recognizable iff A is decidable

✦ Corollary: ATM and AH are not Turing-recognizable
If they were, then ATM and AH would be decidable

3R. Rao, CSE 322

The Chomsky Hierarchy of Languages

ATM,

AH , ETM

{0n1n 0n |
n ≥ 0},
ADFA,
ACFG

{0n1n | n ≥ 0},
{wwR |

w ∈ {0,1}*}

(0∪ 1)*11Examples

TMs that
may loop for
strings not in
language

Deciders –
TMs that
halt for all
inputs

PDA,

CFG

DFA,
NFA,
RegExp

Computational
Models

Turing-
Recognizable

DecidableContext-FreeRegularLanguage

Increasing generality

(Chomsky also studied context-sensitive languages (CSLs, e.g. anbn cn) , a
subset of decidable languages recognized by linear-bounded automata (LBA))

4R. Rao, CSE 322

The Chomsky Hierarchy – Then & Now…

CFLs

Decidable

T-recognizable

Not T-recognizable

Then (1950s) Now

U.S. interventionism in
the developing world

Political economy
of human rights

Propaganda role
of corporate

media

Noam Chomsky

ATM

ATM

0n1n0n

0n1n

REG
0*1*

5R. Rao, CSE 322

Review Slides for the
Final Exam are 3 slides

away…

6R. Rao, CSE 322

This space for rent

7R. Rao, CSE 322

Final Exam

✦ Details regarding the Final Exam
When: Monday, March 13, 2006 from 2:30-4:20 p.m.
Where: Same classroom
What will it cover?
➧ Chapters 0-4 and Chapter 5 up to Thm. 5.4.
➧ Emphasis will be on material covered after midterm

(Chapter 2 and beyond)
➧ You may bring 1 page of notes (8 ½” x 11” sheet!)

● Plus your midterm page of notes (if you wish)
➧ Approximately 6 questions

How do I ace it?
➧ Practice, practice, practice!
➧ See class website for sample final exam and solutions

8R. Rao, CSE 322

I believe the
Final exam will
be decidable!

I believe the world’s
problems are

politically decidable.

I believe my next
movie will be

unrecognizable.

Stay cool with da
pumpin’ lemma!

9R. Rao, CSE 322

Review of Chapters 0-1

✦ See Midterm Review Slides
Emphasis on:
➧ Sets, strings, and languages
➧ Operations on strings/languages (concat, *, union, etc)
➧ Lexicographic ordering of strings
➧ DFAs and NFAs: definitions and how they work
➧ Regular languages and properties
➧ Regular expressions and GNFAs (see lecture slides)
➧ Pumping lemma for regular languages and showing

nonregularity

10R. Rao, CSE 322

Context-Free Grammars (CFGs)

✦ CFG G = (V, Σ, R, S)
Variables, Terminals, Rules, Start variable
uAv yields uwv if A → w is a rule in G: Written as uAv ⇒ uwv
u ⇒* v if u yields v in 0, 1, or more steps
L(G) = {w | S ⇒* w}
CFGs for regular languages: Convert DFA to a CFG (Create
variables for states and rules to simulate transitions)

✦ Ambiguity: Grammar G is ambiguous if G has two or more
parse trees for some string w in L(G)

See lecture notes/text/homework for examples

✦ Closure properties of Context-Free languages
Closed under ∪ , concat, * but not ∩ or complementation.
See homework and lecture slides

11R. Rao, CSE 322

Pushdown Automata (PDA)

✦ PDA P = (Q, Σ, Γ, δ, q0, F)
Q = set of states
Σ = input alphabet
Γ = stack alphabet
q0 = start state
F ⊆ Q = set of accept states
Transition function δ: Q × Σε × Γε → Pow(Q × Γε)
(current state, next input symbol, popped symbol) →
{set of (next state, pushed symbol)}
Input/popped/pushed symbol can be ε

✦ Example PDAs for:
{w#wR| w ∈ {0,1}*}, {wwR| w ∈ {0,1}*}

12R. Rao, CSE 322

Context-Free Languages: Main Results

✦ CFGs and PDAs are equivalent in computational power
Generate/recognize the same class of languages (CFLs)

1. If L = L(G) for some CFG G, then L = L(M) for some PDA M
➧ Know how to convert a given CFG to a PDA

2. If L = L(M) for some PDA M, then L = L(G) for some CFG G
➧ Be familiar with the construction – no need to memorize the

induction proof

✦ Pumping Lemma for CFLs
Know the exact statement: L CFL ⇒ ∃ p s.t. ∀ s in L s.t. |s| ≥ p,
∃ u, v, x, y, and z s.t. s = uvxyz and:
1. uvixyiz ∈ L ∀ i ≥ 0, 2. |vy| ≥ 1, and 3. |vxy| ≤ p.

✦ Using the PL to show languages are not CFLs
E.g. {0n1n0n | n ≥ 0} and {0n | n is a prime number}

13R. Rao, CSE 322

Turing Machines: Definition and Operation

✦ TM M = (Q, Σ, Γ, δ, q0, qACC, qREJ)
Q = set of states
Σ = input alphabet not containing blank symbol “_”
Γ = tape alphabet containing blank “_”, all symbols in Σ, plus
possible temporary variables such as X, Y, etc.
q0 = start state
qACC = accept and halt state
qREJ = reject and halt state
Transition function δ: Q × Γ → Q × Γ × {L, R}

✦ δ(current state, symbol under the head) = (next state, symbol to
write over current symbol, direction of head movement)

Configurations of a TM, definition of language L(M) of a TM M

14R. Rao, CSE 322

Decidable versus Recognizable Languages

✦ A language is Turing-recognizable if there is a Turing
machine M such that L(M) = L

For all strings in L, M halts in state qACC
For strings not in L, M may either halt in qREJ or loop forever

✦ A language is decidable if there is a “decider” Turing
machine M that halts on all inputs such that L(M) = L

For all strings in L, M halts in state qACC
For all strings not in L, M halts in state qREJ

✦ Showing a language is decidable by construction:
Implementation level description of deciders
E.g. {0n1n0n | n ≥ 0}, {0n | n = m2 for some integer m}, see text

15R. Rao, CSE 322

Equivalence of TM Types & Church-Turing Thesis

✦ Varieties of TMs: Know the definition, operation, and idea
behind proof of equivalence with standard TM

Multi-Tape TMs: TM with k tapes and k heads
Nondeterministic TMs (NTMs)
➧ Decider if all branches halt on all inputs

Enumerator TM for L: Prints all strings in L (in any order,
possibly with repetitions) and only the strings in L

✦ Can use any of these variants for showing a language is
Turing-recognizable or decidable

✦ Church-Turing Thesis (not a theorem!): Any formal
definition of “algorithms” or “programs” is equivalent to
Turing machines

16R. Rao, CSE 322

Decidable Problems

✦ Any problem can be cast as a language membership problem
Does DFA D accept input w? Equivalent to:
Is <D,w> in ADFA = {<D,w> | D is a DFA that accepts input w}?

✦ Decidable problems concerning languages and machines:
ADFA
ANFA = {<N,w> | N is a NFA that accepts input w}
AREX = {<R,w> | R is a reg. exp. that generates string w}
Aempty-DFA = {<D> | D is a DFA and L(D) = ∅ }
AEqual-DFA = {<C,D> | C and D are DFAs and L(C) = L(D)}
ACFG = {<G,w> | G is a CFG that generates string w}
Aempty-CFG = {<G> | G is a CFG and L(G) = ∅ }

17R. Rao, CSE 322

Undecidability, Reducibility, Unrecognizability

✦ ATM = {<M,w> | M is a TM and M accepts w} is Turing-
recognizable but not decidable (Proof by diagonalization)

✦ To show a problem A is undecidable, reduce ATM to A
Show that if A was decidable, then you can use the decider for
A as a subroutine to decide ATM
E.g. Halting problem = “Does a program halt for an input or
go into an infinite loop?”
Can show that the Halting problem is undecidable by reducing
ATM to AH = { <M,w> | TM M halts on input w}

✦ A is decidable iff A and A are both Turing-recognizable
Corollary: ATM and AH are not Turing-recognizable

