Are There Languages That Are Not Even Recognizable?

- Recall from last class:
$A_{\text {TM }}=\{<M, w>\mid M$ is a TM and \mathbf{M} accepts $\mathbf{w}\}$ $A_{H}=\{<M, w>\mid M$ is a TM and M halts on w $\}$
$-\mathrm{A}_{\mathrm{TM}}$ and A_{H} are undecidable but Turing-recognizable \Rightarrow Are there languages that are not even Turingrecognizable?
- What happens if a language A and its complement $\overline{\mathrm{A}}$ are both Turing-recognizable?

Are There Languages That Are Not Even Recognizable?

- What happens if both \mathbf{A} and $\overline{\mathbf{A}}$ are Turing-recognizable?
\Rightarrow There exist TMs M1 and M2 that recognize A and \bar{A}
\Rightarrow Can construct a decider for A ! On input w:

1. Simulate M1 and M2 on w one step at a time, alternating between them.
2. If M1 accepts, then ACC w and halt; if M2 accepts, REJ w and halt.

- Thm: A and $\overline{\mathrm{A}}$ are both Turing-recognizable iff A is decidable
- Corollary: $\overline{\mathbf{A}}_{\mathrm{TM}}$ and $\overline{\mathbf{A}}_{\mathrm{H}}$ are not Turing-recognizable \Rightarrow If they were, then A_{TM} and A_{H} would be decidable

The Chomsky Hierarchy of Languages

Language	Regular	Context-Free	Decidable	TuringRecognizable
Computational Models	DFA, NFA, RegExp	$\begin{aligned} & \text { PDA, } \\ & \text { CFG } \end{aligned}$	Deciders TMs that halt for all inputs	TMs that may loop for strings not in language
Examples	$(0 \cup 1) * 11$	$\begin{aligned} & \left\{0^{\mathrm{n}} 1^{\mathrm{n}} \mid \mathrm{n} \geq 0\right\}, \\ & \left\{\mathrm{ww}^{\mathrm{R}} \mid\right. \\ & \left.\mathrm{w} \in\{0,1\}^{*}\right\} \end{aligned}$	$\begin{aligned} & \left\{0^{\mathrm{n} 1 \mathrm{n}^{\mathrm{n}}} 0^{\mathrm{n}}\right. \\ & \mathrm{n} \geq 0\}, \\ & \mathrm{A}_{\mathrm{DFA}}, \\ & \mathrm{~A}_{\mathrm{CFG}} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{A}_{\mathrm{TM}}, \\ & \mathrm{~A}_{\mathrm{H}}, \mathrm{E}_{\mathrm{TM}} \end{aligned}$

(Chomsky also studied context-sensitive languages (CSLs, e.g. $a^{n} b^{n} c^{n}$), a subset of decidable languages recognized by linear-bounded automata (LBA))

The Chomsky Hierarchy - Then \& Now...

This space for rent

Final Exam

- Details regarding the Final Exam
\Rightarrow When: Monday, March 13, 2006 from 2:30-4:20 p.m.
\Rightarrow Where: Same classroom
\Rightarrow What will it cover?
- Chapters 0-4 and Chapter 5 up to Thm. 5.4.
- Emphasis will be on material covered after midterm (Chapter 2 and beyond)
* You may bring 1 page of notes ($8^{1 / 2 "} \times 11^{\prime \prime}$ sheet!)
- Plus your midterm page of notes (if you wish)
- Approximately 6 questions
\Rightarrow How do I ace it?
- Practice, practice, practice!
- See class website for sample final exam and solutions

Review of Chapters 0-1

- See Midterm Review Slides
\Rightarrow Emphasis on:
Sets, strings, and languages
- Operations on strings/languages (concat, *, union, etc)

Lexicographic ordering of strings

- DFAs and NFAs: definitions and how they work
- Regular languages and properties
- Regular expressions and GNFAs (see lecture slides)
- Pumping lemma for regular languages and showing nonregularity

Context-Free Grammars (CFGs)

$\rightarrow \mathrm{CFGG}=(\mathrm{V}, \Sigma, \mathrm{R}, \mathrm{S})$
\Rightarrow Variables, Terminals, Rules, Start variable
$\Rightarrow u A v$ yields uwv if $A \rightarrow w$ is a rule in G : Written as $u A v \Rightarrow u w v$
$\Rightarrow u \Rightarrow * v$ if u yields v in 0,1 , or more steps
$\Rightarrow L(G)=\left\{w \mid S \Rightarrow^{*} w\right\}$
\Rightarrow CFGs for regular languages: Convert DFA to a CFG (Create variables for states and rules to simulate transitions)

- Ambiguity: Grammar G is ambiguous if G has two or more parse trees for some string w in $L(G)$
\Rightarrow See lecture notes/text/homework for examples
- Closure properties of Context-Free languages
\Rightarrow Closed under \cup, concat, * but not \cap or complementation.
\Rightarrow See homework and lecture slides

Pushdown Automata (PDA)

$\rightarrow \mathrm{PDA} \mathrm{P}=\left(\mathrm{Q}, \Sigma, \Gamma, \delta, \mathrm{q}_{0}, \mathrm{~F}\right)$
$\Rightarrow \mathrm{Q}=$ set of states
$\Rightarrow \Sigma=$ input alphabet
$\Rightarrow \Gamma=$ stack alphabet
$\Rightarrow \mathrm{q}_{0}=$ start state
$\Rightarrow \mathrm{F} \subseteq \mathrm{Q}=$ set of accept states
\Rightarrow Transition function $\delta: \mathrm{Q} \times \Sigma_{\varepsilon} \times \Gamma_{\varepsilon} \rightarrow \operatorname{Pow}\left(\mathrm{Q} \times \Gamma_{\varepsilon}\right)$
\Rightarrow (current state, next input symbol, popped symbol) \rightarrow
\{set of (next state, pushed symbol) $\}$
\Rightarrow Input/popped/pushed symbol can be ε

- Example PDAs for:
$\Rightarrow\left\{w^{*} \# w^{R} \mid w \in\{0,1\}^{*}\right\},\left\{w^{2} \mid w \in\{0,1\}^{*}\right\}$

Context-Free Languages: Main Results

- CFGs and PDAs are equivalent in computational power
\Rightarrow Generate/recognize the same class of languages (CFLs)

1. If $\mathrm{L}=\mathrm{L}(\mathrm{G})$ for some CFG G , then $\mathrm{L}=\mathrm{L}(\mathrm{M})$ for some PDA M

- Know how to convert a given CFG to a PDA

2. If $L=L(M)$ for some PDA M, then $L=L(G)$ for some CFG G

- Be familiar with the construction - no need to memorize the induction proof
- Pumping Lemma for CFLs
\Rightarrow Know the exact statement: L CFL $\Rightarrow \exists$ p s.t. $\forall s$ in L s.t. $|s| \geq$ p, $\exists u, v, x, y$, and z s.t. $s=u v x y z$ and:

1. $u v^{i} x y^{i} z \in \mathrm{~L} \forall i \geq 0$, 2. $|v y| \geq 1$, and \quad 3. $|v x y| \leq \mathrm{p}$.

- Using the PL to show languages are not CFLs
\Rightarrow E.g. $\left\{0^{\mathrm{n}} 1^{\mathrm{n}} 0^{\mathrm{n}} \mid \mathrm{n} \geq 0\right\}$ and $\left\{0^{\mathrm{n}} \mid \mathrm{n}\right.$ is a prime number $\}$
R. Rao, CSE 322

Turing Machines: Definition and Operation

$\rightarrow \mathrm{TM} \mathrm{M}=\left(\mathrm{Q}, \Sigma, \Gamma, \delta, \mathrm{q}_{0}, \mathrm{q}_{\mathrm{ACC}}, \mathrm{q}_{\mathrm{REJ}}\right)$
$\Rightarrow \mathrm{Q}=$ set of states
$\Rightarrow \Sigma=$ input alphabet not containing blank symbol "-"
$\Rightarrow \Gamma=$ tape alphabet containing blank " "", all symbols in Σ, plus possible temporary variables such as X, Y, etc.
$\Rightarrow \mathrm{q}_{0}=$ start state
$\Rightarrow q_{A C C}=$ accept and halt state
$\Rightarrow q_{\text {REJ }}=$ reject and halt state
\Rightarrow Transition function $\delta: \mathrm{Q} \times \Gamma \rightarrow \mathrm{Q} \times \Gamma \times\{\mathrm{L}, \mathrm{R}\}$
$\uparrow \delta($ current state, symbol under the head $)=($ next state, symbol to write over current symbol, direction of head movement)
\Rightarrow Configurations of a TM, definition of language $\mathrm{L}(\mathrm{M})$ of a TM M

Decidable versus Recognizable Languages

- A language is Turing-recognizable if there is a Turing machine M such that $\mathrm{L}(\mathrm{M})=\mathrm{L}$
\Rightarrow For all strings in L, M halts in state $q_{A C C}$
\Rightarrow For strings not in L, M may either halt in $\mathrm{q}_{\text {REJ }}$ or loop forever
- A language is decidable if there is a "decider" Turing machine M that halts on all inputs such that $\mathrm{L}(\mathrm{M})=\mathrm{L}$
\Rightarrow For all strings in L, M halts in state $q_{A C C}$
\Rightarrow For all strings not in L, M halts in state $q_{\text {REJ }}$
- Showing a language is decidable by construction:
\Rightarrow Implementation level description of deciders
\Rightarrow E.g. $\left\{0^{n} 1^{n} 0^{n} \mid n \geq 0\right\},\left\{0^{n} \mid n=m^{2}\right.$ for some integer $\left.m\right\}$, see text

Equivalence of TM Types \& Church-Turing Thesis

- Varieties of TMs: Know the definition, operation, and idea behind proof of equivalence with standard TM \Rightarrow Multi-Tape TMs: TM with k tapes and k heads \Rightarrow Nondeterministic TMs (NTMs)
- Decider if all branches halt on all inputs
\Rightarrow Enumerator TM for L: Prints all strings in L (in any order, possibly with repetitions) and only the strings in L
- Can use any of these variants for showing a language is Turing-recognizable or decidable
- Church-Turing Thesis (not a theorem!): Any formal definition of "algorithms" or "programs" is equivalent to Turing machines

Decidable Problems

- Any problem can be cast as a language membership problem
\Rightarrow Does DFA D accept input w? Equivalent to:
Is $<\mathrm{D}, \mathrm{w}\rangle$ in $\mathrm{A}_{\mathrm{DFA}}=\{\langle\mathrm{D}, \mathrm{w}\rangle \mid \mathrm{D}$ is a DFA that accepts input w$\}$?
\leftrightarrow Decidable problems concerning languages and machines:
$\Rightarrow \mathrm{A}_{\mathrm{DFA}}$
$\Rightarrow \mathrm{A}_{\mathrm{NFA}}=\{<\mathrm{N}, \mathrm{w}\rangle \mid \mathrm{N}$ is a NFA that accepts input w$\}$
$\Rightarrow A_{\text {REX }}=\{<R, w>\mid R$ is a reg. exp. that generates string $w\}$
$\Rightarrow A_{\text {empty-DFA }}=\{<\mathrm{D}>\mid \mathrm{D}$ is a DFA and $\mathrm{L}(\mathrm{D})=\varnothing\}$
$\Rightarrow \mathrm{A}_{\text {Equal-DFA }}=\{<\mathrm{C}, \mathrm{D}>\mid \mathrm{C}$ and D are DFAs and $\mathrm{L}(\mathrm{C})=\mathrm{L}(\mathrm{D})\}$
$\Rightarrow \mathrm{A}_{\mathrm{CFG}}=\{<\mathrm{G}, \mathrm{w}\rangle \mid \mathrm{G}$ is a CFG that generates string w $\}$
$\Rightarrow \mathrm{A}_{\text {empty-CFG }}=\{<\mathrm{G}>\mid \mathrm{G}$ is a CFG and $\mathrm{L}(\mathrm{G})=\varnothing\}$

Undecidability, Reducibility, Unrecognizability

$\rightarrow A_{T M}=\{<M, w>\mid M$ is a TM and M accepts $w\}$ is Turingrecognizable but not decidable (Proof by diagonalization)

- To show a problem A is undecidable, reduce A_{TM} to A
\Rightarrow Show that if A was decidable, then you can use the decider for A as a subroutine to decide $\mathrm{A}_{\text {TM }}$
\Rightarrow E.g. Halting problem = "Does a program halt for an input or go into an infinite loop?"
\Rightarrow Can show that the Halting problem is undecidable by reducing A_{TM} to $\mathrm{A}_{\mathrm{H}}=\{<\mathrm{M}, \mathrm{w}>\mid$ TM M halts on input w$\}$
- A is decidable iff A and $\overline{\mathrm{A}}$ are both Turing-recognizable
\Rightarrow Corollary: $\overline{\mathrm{A}}_{\mathrm{TM}}$ and $\overline{\mathrm{A}}_{\mathrm{H}}$ are not Turing-recognizable

