PROBLEM SET 7 Due Friday, May 26, 2006, in class

Reading Assignment: Read Sections 3.1, 3.3 and 4.1 of Sipser's text.

Instructions: The basic instructions are the same as in Problem Set 1.

There are **SIX** questions in this assignment. Again, it never hurts to start early. Also **do not forget** to mention the names of your collaborators in your homework.

- 1. (Bonus) (5 points) Show that the following context-free language is inherently ambiguous: $L_1 = \{0^i 1^j 2^k \mid i = j \text{ or } j = k, \text{ where } i, j, k \ge 0\}.$
- 2. (10 points) Let G be a context-free grammar in Chomsky normal form that contains k variables. Show that if L(G) contains a string of length greater than 2^k , then L(G) is infinite. (that is, the set of strings in L(G) is infinite.)

(*Hint*: It might help to think of the parse trees like we did in the proof of the pumping lemma.)

- 3. (*) (10 points) Using the method covered in class, convert the PDA in Figure 2.19, Pg. 114 in Sipser's text (Fig 2.8, Pg. 106 in First edition) to a CFG. Show your steps.
- 4. $(2 \times 10 = 20 \text{ points})$ Use the pumping lemma to prove that the following languages are not context-free.
 - (a) $L_2 = \{0^n 1^n 2^n 3^n \mid n \ge 0\}$. (The alphabet is $\{0, 1, 2, 3\}$.)
 - (b) L₃ = {x₁#x₂# ··· #x_k | k ≥ 2, each x_i ∈ {a, b}*, and x_i = x_j for some i ≠ j}.
 (Note: L₃ is different from the language in the previous homework– the previous homework question needed x_i = x_j^R.)
 (*Hint*: Try and think of an s that has very few #.)
- 5. (10 points) Let L_4 be the language of all palindromes over $\{0, 1\}$ containing an equal number of 0s and 1s. Prove that L_4 is not context-free.
- 6. (Bonus) (10 points) Prove the following strengthening of the pumping lemma for CFLs, where we require that **both** the string v and y (where s is broken up as s = uvxyz) are non-empty.

If L is a CFL, then there exists an integer $p \ge 1$ such that for all $s \in L$ with $|s| \ge p$, there exists a way to break it down as s = uvxyz, which satisfy the following properties:

- (a) For all $i \ge 0$, $uv^i xy^i z \in L$,
- (b) $v \neq \epsilon$ and $y \neq \epsilon$,
- (c) $|vxy| \leq p$.