
CSE322: Formal Models in Computer Science Spring 2006

Problem Set 2

Due Friday, April 14, 2006, in class

Reading Assignment: Sipser’s book, Sections 1.2 and 1.3.

Instructions: The basic instructions are the same as in Problem Set 1.
There are SIX questions in this assignment. Two of them are bonus questions (one of them

is due in two weeks). The bonus question scores will be maintained (and marked) separately from
the total homework score. This problem set is longer (and possibly harder) than the first one– so
start working on the problems early!

1. (*) (10 points) Given two strings x and y of exactly the same length, we can create a new
string called shuffle(x, y) that consists of characters of x and y alternating one after another
starting with the first character of x. That is, if x = x1 . . . xk and y = y1 . . . yk, then
shuffle(x, y) = x1y1x2y2 . . . xkyk. For languages A and B, define

SHUFFLE(A,B) = {shuffle(x, y) | x ∈ A, y ∈ B and |x| = |y|}.

Given DFAs that accept A and B, give an intuitive description and then a formal description
of how to build a DFA that accepts SHUFFLE(A,B).
(Note that in the above we did not specify that A and B have the same alphabet. Also
note that the DFA for SHUFFLE(A,B) only gets one symbol at a time, that is, on input
x1y1x2y2 . . . xkyk; it reads it as x1, y1, x2, y2 . . . , xk, yk and not (for example) in pairs like
x1y1, x2y2, . . . , xkyk).

2. (2 × 5 = 10 points) Sipser Exercise 1.14, Page 85 (Ex 1.10, Pg. 85 in 1st edition).

3. (*) (16 points) Convert the following NFA into a DFA using the subset construction covered
in class (only the states reachable from the start state need to be shown).

1 2

34

b

b

a

a

b
ε

b

a

a,b

a

1

4. (10 points) (Bonus) An odd-NFA M is a 5-tuple 〈Q,Σ, δ, s, F 〉 that accepts a string x ∈ Σ∗

if the number of possible states that M could be in after reading input x, which are also in
F , is an odd number. In other words, the set of all possible states has an odd number of
states from F . Note, in contrast, a “regular” NFA accepts a string if some state among these
possible states is a final state.

Prove that odd-NFAs accept the set of regular languages.

5. (3 × 8 = 24 points) Draw NFAs with at most 8 states that accept the following languages.
Explain briefly why each of your NFAs are correct.

(a) L1 = {w | w ∈ {0, 1}∗, w is any string except 110 and 101}.

(b) L2 = {w | w ∈ {0, 1}∗, w contains a 111 to the left of its last (right most) 3 symbols}.
For example, 111011, 0111000 ∈ L2 but 111, 100000 6∈ L2.

(c) L3 = {w | w ∈ {e, a, t,#}∗, w contains either eat or ate}.

6. (2 × 10 + 10 = 30 points) In this problem you will prove that regular languages are closed
under certain unary operations. For all the three parts, assume L is a regular language.

(a) Prove that LR = {xR | x ∈ L} is also regular.

(b) Prove that min(L) = {w ∈ L | no proper prefix of w is in L} is also regular.1

Here is an example of the operation. If L = {a, ab, abb}, then min(L) = {a}.

(c) (Bonus, due April 21) Prove that half(L) is regular, where the operation is defined as
follows:

half(L) = {x | for some y such that |x| = |y|, xy belongs to L}.

(For all of the above parts, presenting a correct construction of an NFA/DFA (which
should include a formal description) for the languages in question, along with an informal
yet convincing explanation of why the constructions work will be sufficient. Fully formal
proofs of correctness using induction is not required.)

1A string x is a prefix of string y if a string z exists such that y = xz. Further, x is a proper prefix of y if x 6= y.

2

