CSE 322: Midterm Review

- Basic Concepts (Chapter 0)
\Rightarrow Sets
- Notation and Definitions
- $\mathrm{A}=\{\mathrm{x} \mid$ rule about x$\}, \mathrm{x} \in \mathrm{A}, \mathrm{A} \subseteq \mathrm{B}, \mathrm{A}=\mathrm{B}$
- \exists ("there exists"), \forall ("for all")
- Finite and Infinite Sets
- Set of natural numbers N , integers Z , reals R etc.
- Empty set \varnothing
- Set operations: Know the definitions for proofs
- Union: $\mathrm{A} \cup \mathrm{B}=\{\mathrm{x} \mid \mathrm{x} \in \mathrm{A}$ or $\mathrm{x} \in \mathrm{B}\}$
- Intersection $A \cap B=\{x \mid x \in A$ and $x \in B\}$
- Complement $\bar{A}=\{x \mid x \notin A\}$

Basic Concepts (cont.)

- Set operations (cont.)
\Rightarrow Power set of $\mathrm{A}=\operatorname{Pow}(\mathrm{A})$ or $2^{\mathrm{A}}=$ set of all subsets of A
- E.g. $\mathrm{A}=\{0,1\} \rightarrow 2^{\mathrm{A}}=\{\varnothing,\{0\},\{1\},\{0,1\}\}$
\Rightarrow Cartesian Product $\mathrm{A} \times \mathrm{B}=\{(\mathrm{a}, \mathrm{b}) \mid \mathrm{a} \in \mathrm{A}$ and $\mathrm{b} \in \mathrm{B}\}$
- Functions:
\Rightarrow f: Domain \rightarrow Range
- $\operatorname{Add}(\mathrm{x}, \mathrm{y})=\mathrm{x}+\mathrm{y} \rightarrow$ Add: $\mathrm{Z} \times \mathrm{Z} \rightarrow \mathrm{Z}$
\Rightarrow Definitions of 1-1 and onto (bijection if both)

Strings

- Alphabet $\sum=$ finite set of symbols, e.g. $\sum=\{0,1\}$
- String w $=$ finite sequence of symbols $\in \sum$
$\Rightarrow \mathrm{w}=\mathrm{w}_{1} \mathrm{w}_{2} \ldots \mathrm{w}_{\mathrm{n}}$
- String properties: Know the definitions
\Rightarrow Length of $\mathrm{w}=|\mathrm{w}| \quad\left(|\mathrm{w}|=\mathrm{n}\right.$ if $\left.\mathrm{w}=\mathrm{w}_{1} \mathrm{w}_{2} \ldots \mathrm{w}_{\mathrm{n}}\right)$
\Rightarrow Empty string $=\varepsilon \quad$ (length of $\varepsilon=0$)
\Rightarrow Substring of w
\Rightarrow Reverse of $w=w^{R}=w_{n} w_{n-1} \cdots w_{1}$
\Rightarrow Concatenation of strings x and y (append y to x)
$\Rightarrow \mathrm{y}^{k}=$ concatenate y to itself to get string of $k \mathrm{y}$'s
\Rightarrow Lexicographical order = order based on length and dictionary order within equal length

Languages and Proof Techniques

- Language $\mathrm{L}=$ set of strings over an alphabet (i.e. $\mathrm{L} \subseteq \sum^{*}$)
\Rightarrow E.g. $\mathrm{L}=\left\{0^{\mathrm{n}} 1^{\mathrm{n}} \mid \mathrm{n} \geq 0\right\}$ over $\sum=\{0,1\}$
\Rightarrow E.g. $\mathrm{L}=\{\mathrm{p} \mid \mathrm{p}$ is a syntactically correct $\mathrm{C}++$ program $\}$ over $\sum=$ ASCII characters
- Proof Techniques: Look at lecture slides, handouts, and notes

1. Proof by counterexample
2. Proof by contradiction
3. Proof of set equalities $(A=B)$
4. Proof of "iff" $(\mathrm{X} \Leftrightarrow \mathrm{Y})$ statements (prove both $\mathrm{X} \Rightarrow \mathrm{Y}$ and $\mathrm{X} \Leftarrow \mathrm{Y})$
5. Proof by construction
6. Proof by induction
7. Pigeonhole principle
8. Dovetailing to prove a set is countably infinite E.g. Z or $\mathrm{N} \times \mathrm{N}$
9. Diagonalization to prove a set is uncountable E.g. 2^{N} or Reals

Chapter 1 Review: Languages and Machines

Languages and Machines (Chapter 1)

- Language $=$ set of strings over an alphabet
\Rightarrow Empty language $=$ language with no strings $=\varnothing$
\Rightarrow Language containing only empty string $=\{\varepsilon\}$
- DFAs
\Rightarrow Formal definition $\mathrm{M}=\left(\mathrm{Q}, \Sigma, \delta, \mathrm{q}_{0}, \mathrm{~F}\right)$
\Rightarrow Set of states Q , alphabet \sum, start state q_{0}, accept ("final") states F , transition function $\delta: \mathrm{Q} \times \Sigma \rightarrow \mathrm{Q}$
$\Rightarrow M$ recognizes language $L(M)=\{w \mid M$ accepts $w\}$
\Rightarrow In class examples:
E.g. DFA for $L(M)=\{w \mid w$ ends in 0$\}$
E.g. DFA for $L(M)=\{w \mid w$ does not contain 00$\}$
E.g. DFA for $L(M)=\{w \mid w$ contains an even \# of 0 's $\}$

Try: DFA for $L(M)=\{w \mid w$ contains an even \# of 0 's and an odd number of 1's\}

Languages and Machines (cont.)

- Regular Language = language recognized by a DFA
- Regular operations: Union \cup, Concatenation o and star *
\Rightarrow Know the definitions of $A \cup B, A \circ B$ and A^{*}
$\Rightarrow \Sigma=\{0,1\} \rightarrow \Sigma^{*}=\{\varepsilon, 0,1,00,01, \ldots\}$
- Regular languages are closed under the regular operations
\Rightarrow Means: If A and B are regular languages, we can show $A \cup B$, $\mathrm{A} \circ \mathrm{B}$ and A^{*} (and also B^{*}) are regular languages
\Rightarrow Cartesian product construction for showing $A \cup B$ is regular by simulating DFAs for A and B in parallel
- Other related operations: $\mathrm{A} \cap \mathrm{B}$ and complement $\overline{\mathrm{A}}$
\Rightarrow Are regular languages closed under these operations?

NFAs, Regular expressions, and GNFAs

- NFAs vs DFAs
\Rightarrow DFA: $\delta($ state,symbol $)=$ next state
\Rightarrow NFA: $\delta($ state,symbol or $\varepsilon)=$ set of next states
- Features: Missing outgoing edges for one or more symbols, multiple outgoing edges for same symbol, ε-edges
\Rightarrow Definition of: NFA N accepts a string w $\in \sum^{*}$
\Rightarrow Definition of: NFA N recognizes a language $\mathrm{L}(\mathrm{N}) \subseteq \Sigma^{*}$
\Rightarrow E.g. NFA for $\mathrm{L}=\left\{\mathrm{w} \mid \mathrm{w}=\mathrm{x} 1 \mathrm{a}, \mathrm{x} \in \sum^{*}\right.$ and $\left.\mathrm{a} \in \sum\right\}$
- Regular expressions: Base cases $\varepsilon, \varnothing, a \in \Sigma$, and R1 \cup R2, R1 ${ }^{\circ}$ R2 or R1*
- GNFAs = NFAs with edges labeled by regular expressions
\Rightarrow Used for converting NFAs/DFAs to regular expressions
R. Rao, CSE 322

Main Results and Proofs

- L is a Regular Language iff
$\Rightarrow L$ is recognized by a DFA iff
\Rightarrow L is recognized by an NFA iff
$\Rightarrow L$ is recognized by a GNFA iff
\Rightarrow L is described by a Regular Expression
- Proofs:
\Rightarrow NFA \rightarrow DFA: subset construction (1 DFA state=subset of NFA states)
\Rightarrow DFA \rightarrow GNFA \rightarrow Reg Exp: Repeat two steps:

1. Collapse two parallel edges to one edge labeled $(a \cup b)$, and
2. Replace edges through a state with a loop with one edge labeled (ab*c)
\Rightarrow Reg $\operatorname{Exp} \rightarrow$ NFA: combine NFAs for base cases with ε-transitions

Other Results

- Using NFAs to show that Regular Languages are closed under:
\Rightarrow Regular operations \cup, \circ and *
- Are Regular Languages closed under:
\Rightarrow intersection?
\Rightarrow complement (Exercise 1.10)?
- Are there other operations that regular languages are closed under?

Other Results

- Are Regular languages closed under:
\Rightarrow reversal?
\Rightarrow subset \subseteq ?
\Rightarrow superset \supseteq ?
\Rightarrow MAX?
$\operatorname{MAX}(\mathrm{L})=\{\mathrm{w} \in \mathrm{L} \mid \mathrm{w}$ is not a proper prefix of any string in L \}

Pumping Lemma

- Pumping lemma in plain English (sort of): If L is regular, then there is a p (= number of states of a DFA accepting L) such that any string s in L of length $\geq \mathrm{p}$ can be expressed as $s=x y z$ where y is not null (y is the loop in the DFA), $|x y| \leq \mathrm{p}$ (loop occurs within p state transitions), and any "pumped" string $x y^{i} z$ is in L for all $i \geq 0$ (go through the loop 0 or more times).
- Pumping lemma in plain Logic:

L regular $\Rightarrow \exists$ p s.t. $\left(\forall \mathrm{s} \in \mathrm{L}\right.$ s.t. $|\mathrm{s}| \geq \mathrm{p}\left(\exists \mathrm{x}, \mathrm{y}, \mathrm{z} \in \sum^{*}\right.$ s.t. $(\mathrm{s}=\mathrm{xyz})$ and $(|y| \geq 1)$ and $(|x y| \leq p)$ and $\left.\left.\left(\forall i \geq 0, x y^{i} z \in \mathrm{~L}\right)\right)\right)$
\star Is the other direction \Leftarrow also true?
No! See Problem 1.37 for a counterexample

Proving Non-Regularity using the Pumping Lemma

- Proof by contradiction to show L is not regular

1. Assume L is regular
2. Let p be some arbitrary number ("pumping length")
3. Choose a long enough string $s \in L$ such that $|s| \geq p$
4. Let x, y, z be strings such that $s=x y z,|y| \geq 1$, and $|x y| \leq p$
5. Pick an $\mathrm{i} \geq 0$ such that $x y^{i} z \notin \mathrm{~L}$ (for all $\mathrm{x}, \mathrm{y}, \mathrm{z}$ as in 4)

This contradicts the pump. lemma. Therefore, L is not regular

- Examples: $\left\{0^{\mathrm{n}} 1^{\mathrm{n}} \mid \mathrm{n} \geq 0\right\}$, $\left\{\mathrm{ww} \mid \mathrm{w} \in \sum^{*}\right\},\left\{0^{\mathrm{n}} \mid \mathrm{n}\right.$ is prime $\}$, ADD $=\{x=y+z \mid x, y, z$ are binary numbers and x is sum of y and $z\}$
- Can sometimes also use closure under \cap (and/or complement) \Rightarrow E.g. If $L \cap B=L_{1}$, and B is regular while L_{1} is not regular, then L is not regular (if L was regular, L_{1} would have to be regular)
R. Rao, CSE 322

Some Applications of Regular Languages

- Pattern matching and searching:
\Rightarrow E.g. In Unix:
- ls *.c
- cp /myfriends/games/*.* /mydir/
- grep 'Spock' *trek.txt
- Compilers:
\Rightarrow id $::=$ letter (letter | digit)*
\Rightarrow int : := digit digit*
\Rightarrow float : : = d $d^{*} \cdot d^{*}\left(\varepsilon \mid E d d^{*}\right)$
\Rightarrow The symbol \mid stands for "or" (= union)

Good luck on the midterm on monday!

- You can bring one $81 / 2^{\prime \prime}$ x 11" review sheet
- The questions sheet will have space for answers. We will also bring extra blank sheets for those of you who balk at brevity.

- Go through the homeworks, lecture slides, and examples in the text (Chapters 0 and 1 only)
- Do the practice midterm on the website and avoid being surprised!

