CSE 322 Spring 2004

Homework Assignment \# 5

Due Date: Friday, May 21 (at the beginning of class)

1. (10 points: 5 points each) Consider the CFG G_{4} in Exercise 2.1 on page 119 in the textbook. Give parse trees and leftmost derivations for each of the following strings (see page 98 for a definition of leftmost derivation):
a. $a \times(a+a)$
b. $(\mathrm{a}+((\mathrm{a})))$
2. (36 points: 6 points each) Let $\Sigma=\{0,1\}$. Give CFGs that generate the following languages over Σ :
a. $\{w \mid w$ begins with 0 and ends in 1$\}$
b. $\quad\{w \mid w$ contains an even number of 0 s or length of w is odd $\}$
c. $\{w \mid w$ contains an even number of 0 s and length of w is odd $\}$
d. $\{w \mid w$ does not contain the substring 11\}
e. $\left\{0^{\mathrm{m}} 10^{\mathrm{n}} 10^{\mathrm{m}+\mathrm{n}} \mid \mathrm{m}, \mathrm{n} \geq 1\right\}$
f. $\quad\{w \mid$ the number of 0 s in w is two times the number of 1 s in $w\}$
3. (20 points: $5,5,5,5)$ Show that context-free languages are closed under the regular operations as well as the reversal operator, i.e., if L_{1} and L_{2} are any two context-free languages such that $L_{1}=L\left(G_{1}\right)$ and $L_{2}=L\left(G_{2}\right)$ for two CFGs G_{1} and G_{2}, show that the following languages are also context-free:
a. $\mathrm{L}_{1} \cup \mathrm{~L}_{2}$
b. $\mathrm{L}_{1}{ }^{\circ} \mathrm{L}_{2}$ ("'"" denotes concatenation)
c. $\mathrm{L}_{1}{ }^{*}$
d. $L_{1}{ }^{R}$ (" R " denotes string reversal)
4. (14 points) Construct a CFG for the language $L=\left\{0^{i} 10^{j} 10^{k} \mid i=j\right.$ or $i=k$ for i, j, k $\geq 0\}$ over $\Sigma=\{0,1\}$. Is your grammar ambiguous? Explain why/why not.
5. (20 points) Give informal descriptions (as in Example 2.10 in the textbook) and state diagrams of pushdown automata (PDA) for the languages:
a. $\left\{0^{\mathrm{i}} 10^{\mathrm{j}} 10^{\mathrm{k}} \mid \mathrm{i}<\mathrm{j}\right.$ or $\left.\mathrm{i}>\mathrm{k}\right\}$
b. $\left\{w \# x \mid w, x \in\{0,1\}^{*}\right.$ and w^{R} is a substring of $\left.x\right\}$
