CSE 322 Spring 2004

Homework Assignment # 4

Due Date: Friday, April 30 (at the beginning of class)

- 1. (40 points) Give regular expressions that generate the following languages. In all cases, the alphabet is $\Sigma = \{0,1\}$.
 - a. $\{w \mid w \text{ contains an odd number of } 0s\}$
 - b. $\{w \mid w \neq \varepsilon \text{ and every even position of } w \text{ is a } 0\}$ (Note: Use $w = w_1 w_2 \dots w_n (w_i \in \Sigma)$ for determining position)
 - c. $\{w \mid w \text{ contains no 0s and } |w| < 3\}$
 - d. $\{w \mid w \text{ begins and ends in the same symbol and } |w| > 1\}$
 - e. $\{w \mid w \text{ contains no } 1s \text{ or each } 1 \text{ in } w \text{ is immediately followed by a } 0\}$
 - f. $\{w \mid 01 \text{ occurs at least twice in } w\}$
 - g. $\{w | w \text{ is not } 00 \text{ or } 11\}$
 - h. $\{w \mid w \text{ has neither } 00 \text{ nor } 11 \text{ as a substring}\}$
- 2. (20 points) Convert the following regular expressions to NFAs using the procedure discussed in class (see lecture slides and Lemma 1.29 in the text):
 - a. $1^*((0 \cup 1)(00 \cup 11))^* \cup 0$
 - b. $(1 \cup \varepsilon) \emptyset$
- 3. (10 points) Convert the DFA in Example 1.5 in the textbook (page 39) to a regular expression using the GNFA procedure discussed in class (see lecture slides and Lemma 1.32 in the text).
- 4. (20 points) Show that the following languages over $\Sigma = \{0,1\}$ are <u>not regular</u>:
 - a. $\{0^m 10^n 10^{m+n} \mid m, n \ge 1\}$
 - b. $\{w \mid w \text{ contains more 0s than 1s}\}$
- (10 points) Show that for any regular language L over Σ, the language: MAX(L) = {w | w ∈ L and for all non-empty strings x ∈ Σ*, wx ∉ L} is also regular. Give the formal description of any finite automata you use in your proof.