CSE 322 Spring 2004

Homework Assignment \# 4

Due Date: Friday, April 30 (at the beginning of class)

1. (40 points) Give regular expressions that generate the following languages. In all cases, the alphabet is $\Sigma=\{0,1\}$.
a. $\{\mathrm{w} \mid \mathrm{w}$ contains an odd number of 0 s$\}$
b. $\{w \mid w \neq \varepsilon$ and every even position of w is a 0$\}$
(Note: Use $\mathrm{w}=\mathrm{w}_{1} \mathrm{w}_{2} \ldots \mathrm{w}_{\mathrm{n}}\left(\mathrm{w}_{\mathrm{i}} \in \Sigma\right)$ for determining position)
c. $\{w \mid w$ contains no $0 s$ and $|w|<3\}$
d. $\{w \mid w$ begins and ends in the same symbol and $|w|>1\}$
e. $\{w \mid w$ contains no 1 s or each 1 in w is immediately followed by a 0$\}$
f. $\quad\{\mathrm{w} \mid 01$ occurs at least twice in w$\}$
g. $\{\mathrm{w} \mid \mathrm{w}$ is not 00 or 11$\}$
h. $\{\mathrm{w} \mid \mathrm{w}$ has neither 00 nor 11 as a substring $\}$
2. (20 points) Convert the following regular expressions to NFAs using the procedure discussed in class (see lecture slides and Lemma 1.29 in the text):
a. $\quad 1^{*}((0 \cup 1)(00 \cup 11))^{*} \cup 0$
b. $(1 \cup \varepsilon) \varnothing$
3. (10 points) Convert the DFA in Example 1.5 in the textbook (page 39) to a regular expression using the GNFA procedure discussed in class (see lecture slides and Lemma 1.32 in the text).
4. (20 points) Show that the following languages over $\Sigma=\{0,1\}$ are not regular:
a. $\left\{0^{\mathrm{m}} 10^{\mathrm{n}} 10^{\mathrm{m}+\mathrm{n}} \mid \mathrm{m}, \mathrm{n} \geq 1\right\}$
b. $\{\mathrm{w} \mid \mathrm{w}$ contains more 0 s than 1 s$\}$
5. (10 points) Show that for any regular language L over Σ, the language: $\operatorname{MAX}(\mathrm{L})=\left\{\mathrm{w} \mid \mathrm{w} \in \mathrm{L}\right.$ and for all non-empty strings $\left.\mathrm{x} \in \Sigma^{*}, \mathrm{wx} \notin \mathrm{L}\right\}$ is also regular. Give the formal description of any finite automata you use in your proof.
