CSE 322 Spring 2004

Homework Assignment \# 1

Due Date: Friday, April 9 (at the beginning of class)
Note: $\mathrm{N}=$ set of natural numbers $=\{1,2,3, \ldots\}, \mathrm{Z}=$ set of integers $=\{\ldots,-1,0,1, \ldots\}$

1. (15 points) Write formal descriptions of the following sets:

Examples: Set containing $1,10,100=\{1,10,100\}$
Set containing all even integers $=\{n \mid n=2 m$ for some $m \in Z\}$
a. The set containing all integers that are greater than -5 and less than 0
b. The set containing all natural numbers that are greater than -5 and less than 0
c. The set containing all integers that are odd and divisible by 3
d. The set containing all strings (over $\Sigma=\{0,1\}$) that do not contain 111 as a substring
e. The set containing all strings (over $\Sigma=\{0,1\}$) of odd length whose middle symbol is 0
2. (20 points) Let $A=\{n \mid n$ is a prime number and $10<n<20\}$ and let $B=\{n \mid n=$ $2 \mathrm{~m}-1$ for some $\mathrm{m} \in \mathrm{N}$ and $5<\mathrm{m}<10\}$.
a. Which of the following 4 statements is/are true:
i. $\mathrm{A} \subseteq \mathrm{B}$
ii. $\mathrm{B} \subseteq \mathrm{A}$
iii. $\mathrm{A} \cap \mathrm{B} \neq \varnothing$
iv. $A \cup B=\{n \mid n=2 m+1$ for some $m \in N$ and $5 \leq m<10\}$
v. $(B-A)=\{15,19\} \quad$ (Recall the definition of "-" for sets discussed in class in the proof example for set equality)
b. What is the complement of $\mathrm{A} \cup \mathrm{B}$? (Write a formal description in the form: $\{\mathrm{n} \mid \ldots\}$. Take complement with respect to N)
c. What is $\mathrm{A} \times \mathrm{B}$? (List all the elements)
d. Is $\mathrm{A} \times \mathrm{B}=\mathrm{B} \times \mathrm{A}$? Why/Why not?
e. What is the power set of $A \cap B$ (i.e. $2^{\mathrm{A} \cap \mathrm{B}}$)? (List all the elements)
3. (15 points) Let A, B, and C be any three sets. Prove or disprove:

$$
A-(B \cap C)=(A-B) \cap(A-C)
$$

4. (20 points) Prove that for any two integers x and $y, x y$ is odd if and only if both x and y are odd.
5. (30 points) Prove the following:
a. For any two strings x and y in $\Sigma^{*},(x y)^{R}=y^{R} x^{R}$ (Hint: Use induction on the length of y).
b. For any string x in Σ^{*} and any $k \geq 0,\left(x^{k}\right)^{R}=\left(x^{R}\right)^{k}$ (Hint: Use induction on k).
