Pushdown Automata (PDA)

- Main Idea: Add a stack to an NFA
\Rightarrow Stack provides potentially unlimited memory to an otherwise finite memory machine (finite memory $=$ finite no. of states)

\Rightarrow Stack is LIFO ("Last In, First Out")
\Leftrightarrow Two operations:
* "Push" symbol onto top of stack
" "Pop" symbol from top of stack

6 Components of a $\mathrm{PDA}=\left(\mathrm{Q}, \Sigma, \Gamma, \delta, \mathrm{q}_{0}, \mathrm{~F}\right)$

- $\mathrm{Q}=$ set of states
- $\Sigma=$ input alphabet
$\bullet \Gamma=$ stack alphabet \longrightarrow New components!
$-\mathrm{q}_{0}=$ start state
$\rightarrow \mathrm{F} \subseteq \mathrm{Q}=$ set of accept states

\uparrow Transition function $\delta: \mathbf{Q} \times \Sigma_{\varepsilon} \times \Gamma_{\varepsilon} \rightarrow \operatorname{Pow}\left(\mathbf{Q} \times \Gamma_{\varepsilon}\right)$
\Leftrightarrow (current state, next input symbol, popped symbol) \rightarrow \{set of (next state, pushed symbol)\}
\Rightarrow Input/popped/pushed symbol can be ε

When does a PDA accept a string?

\checkmark A PDA M accepts string $\mathrm{w}=\mathrm{w}_{1} \mathrm{w}_{2} \ldots \mathrm{w}_{\mathrm{m}}$ if and only if there exists at least one accepting computational path i.e. a sequence of states $r_{0}, r_{1}, \ldots, r_{m}$ and strings $s_{0}, s_{1}, \ldots, s_{m}$ (denoting stack contents) such that:

1. $\mathrm{r}_{0}=\mathrm{q}_{0}$ and $\mathrm{s}_{0}=\varepsilon$ (M starts in q_{0} with empty stack)
2. $\left(\mathrm{r}_{\mathrm{i}+1}, \mathrm{~b}\right) \in \delta\left(\mathrm{r}_{\mathrm{i}}, \mathrm{w}_{\mathrm{i}+1}, \mathrm{a}\right)$ (States follow transition rules)
3. $\mathrm{s}_{\mathrm{i}}=\mathrm{a} t \quad$ and $\mathrm{s}_{\mathrm{i}+1}=\mathrm{b} t$ for some $\mathrm{a}, \mathrm{b} \in \Gamma_{\varepsilon}$ and $t \in \Gamma^{*}$ (M pops " a " from top of stack and pushes " b " onto stack)
4. $\mathrm{r}_{\mathrm{m}} \in \mathrm{F} \quad$ (Last state in the sequence is an accept state)

On-Board Examples

- PDA for $\mathrm{L}=\left\{\mathrm{w} \# \mathrm{w}^{\mathrm{R}} \mid \mathrm{w} \in\{0,1\}^{*}\right\} \quad$ (\# acts as a "delimiter")
\Rightarrow E.g. 0\#0, 1\#1, 10\#01, 01\#10, 1011\#1101 \in L
$\Rightarrow L$ is a CFL (what is a CFG for $i t$?)
\Rightarrow Recognizing L using a PDA:
- Push each symbol of w onto stack
- On reaching \# (middle of the input), pop the stack - this yields symbols in w^{R} - and compare to rest of input
\checkmark PDA for $L_{1}=\left\{w^{R} \mid w \in\{0,1\}^{*}\right\}$
\Rightarrow Set of all even length palindromes over $\{0,1\}$
- Recognizing L_{1} using a PDA:
- Problem: Don't know the middle of input string
- Solution: Use nondeterminism (ε-transition) to guess!

