Review of Proof Techniques

- **♦** Contents of the CSE 322 Proofs Toolbox:
 - ⇒ Proof by counterexample: Give an example that disproves the given statement. E.g. PRIMES

 ODD
 - ⇒ **Proof by contradiction**: Assume statement is false and show that it leads to a contradiction.
 - **⇒** Proof by construction
 - \Rightarrow **Proof of set equality** A = B: Show A \subseteq B and B \subseteq A
 - \Rightarrow **Proof of "X iff Y"** (or X \Leftrightarrow Y) statements
 - **⇒** Proof by induction
 - ⇒ "Birdy" technique #1: **Pigeonhole principle**
 - ⇒ "Birdy" technique #2: Dovetailing
 - ⇒ CS Theoretician's favorite: **Diagonalization**

R. Rao, CSE 322

Proof Techniques Review:

The Big picture

- Proof by contradiction: Assume statement is false and show that it leads to a contradiction
 - E.g.: Prove: Complement of any finite subset of Z is infinite
- **♦ Proof by construction**: Show that a statement can be satisfied by constructing an object using what is given \Rightarrow E.g.: Show that for all c, \exists n₀ s.t. n² > cn for all n ≥ n₀
- Proof of set equality A = B: Show A ⊆ B and B ⊆ A
 E.g.: De Morgan's Law (one of two):
 A (B ∪ C) = (A B) ∩ (A C)
- **Proving "X iff Y" statements**: Prove $X \Rightarrow Y$ ("X only if Y") and $Y \Rightarrow X$ ("X if Y")
 - \Rightarrow E.g.: For all real numbers x, show $\lfloor x \rfloor = \lceil x \rceil$ iff $x \in Z$

R. Rao, CSE 322 2

Review: Avian Technique #1

◆ Pigeonhole principle: If A and B are finite sets and |A| > |B|, then there is no one-to-one function from A to B

- \Rightarrow f: A \rightarrow B is one-to-one if for any distinct x, y \in A, $f(x) \neq f(y)$
- ➡ <u>Idea</u>: "more pigeons than pigeonholes" à at least one pigeonhole contains two pigeons.
- ⇒ E.g. In a room of 13 or more people, at least 2 have same birthmonth
- ⇒ Proof? By induction on |B|
- ♦ What is "Proof by Induction"?

R. Rao, CSE 322

Proof by Induction

- ◆ Proof by induction (very common in CS Theory): 2 steps
 - 1. <u>Basis Step</u>: Show statement is true for some finite value n_0 , typically $n_0 = 0$

2. Induction Hypothesis and Induction Step: Assume statement is true for some fixed but arbitrary $k \ge n_0$. Show it is also true for k + 1

 \Rightarrow Example: Show that for all $n \ge 0$, $1 + 2 + \dots + n = n(n+1)/2$

R. Rao, CSE 322

To Infinity and Beyond (with apologies to Disney)

- ♦ Sizing up sets: Cardinality of a set and countably infinite sets
- ♦ Avian Technique #2 Dovetailing: Useful for showing union of any finite or countably infinite collection of countably infinite sets is again countably infinite
 - Set A is *countably infinite* if there is a 1-1 correspondence ("bijection") between N (the set of natural numbers) and A
 - \Rightarrow E.g. Use dovetailing to show Z and N \times N are both countably infinite
 - A set is uncountable if it is neither finite nor countably infinite
- ◆ Diagonalization and Uncountable Sets: See <u>pages 160-163</u> in the text for a nice introduction and more examples.
 - \Rightarrow Example done in class last time: Power set of \hat{N} is uncountable
- ♦ See Handout #1 for more details...

R. Rao, CSE 322

Are we done with this review yet?

Enter...the finite automaton...

R. Rao, CSE 322 6