CSE 322 Autumn 2004

Homework Assignment \# 4

Due Date: Monday, November 1 (at the beginning of class)
NOTE THE EARLY DUE DATE DUE TO THE MIDTERM

1. (35 points) Give regular expressions that generate the following languages. In all cases, the alphabet is $\Sigma=\{0,1\}$.
a. $\{\mathrm{w} \mid \mathrm{w}$ begins with 1 and ends in 01$\}$
a. $\{\mathrm{w} \mid \mathrm{w}$ begins with 0 and ends in 01$\}$ (note: this includes the string 01)
b. $\{\mathrm{w} \mid \mathrm{w}$ contains exactly three 1 s and at least two 0 s$\}$
c. $\{\mathrm{w} \mid$ every 0 in w is followed by a 1$\}$
d. the set of all strings except strings of length 2 .
e. $\{\mathrm{w} \mid \mathrm{w}$ does not contain the substring 10 or w has odd length $\}$
f. $\{\mathrm{w} \mid \mathrm{w}$ does not contain the substring 10 and w has odd length $\}$
2. (25 points) Describe the language accepted by the following regular expression using the $\{\mathrm{w} \mid \ldots$.$\} notation and then convert the regular expression to an NFA$ using the procedure discussed in class (see lecture slides and Lemma 1.29 in the text): $(00 \cup 11)(0 \cup 1)^{*} \cup(0 \cup 1)^{*} 11$
3. (20 points) Convert the DFA M_{1} in Figure 1.5 in the textbook (page 36) to a regular expression using the GNFA procedure discussed in class (see lecture slides and Lemma 1.32 in the text).
4. (20 points) Show that the following language over $\Sigma=\{0,1\}$ is not regular: $\left\{w^{R} \mid w \in\{0,1\}^{*}\right\}$ where R denotes the string reversal operation. (Hint: See Example 1.40 in the textbook).
