Are There Languages That Are Not Even Recognizable?

Recall from last class:

```
A_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and } \mathbf{M} \text{ accepts } \mathbf{w} \}

A_H = \{ \langle M, w \rangle \mid M \text{ is a TM and } \mathbf{M} \text{ halts on } \mathbf{w} \}
```

- ◆ A_{TM} and A_H are undecidable but Turing-recognizable
 - ❖ Are there languages that are <u>not even Turing-recognizable</u>?
- ♦ What happens if a language A and <u>its complement</u> A are both Turing-recognizable?

R. Rao, CSE 322

Are There Languages That Are Not Even Recognizable?

- **+** What happens if both A and \overline{A} are Turing-recognizable?
 - \Rightarrow There exist TMs M1 and M2 that recognize A and \overline{A}
 - **Can construct a decider for A!** On input w:
 - 1. Simulate M1 and M2 on w one step at a time, alternating between them.
 - 2. If M1 accepts, then ACC w and halt; if M2 accepts, REJ w and halt.
- ♦ Thm: A and \overline{A} are both Turing-recognizable iff A is decidable
- **Corollary:** \overline{A}_{TM} and \overline{A}_{H} are <u>not Turing-recognizable</u>
 - \Rightarrow If they were, then A_{TM} and A_{H} would be decidable

The Chomsky Hierarchy of Languages

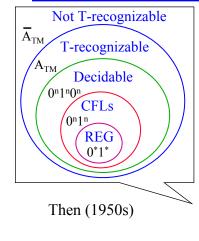
Increasing generality

Language	Regular	Context-Free	Decidable	Turing- Recognizable
Computational Models	DFA, NFA, RegExp	PDA, CFG	Deciders – TMs that halt for all inputs	TMs that may loop for strings not in language
Examples	(001)*11	$ \begin{cases} 0^n 1^n \mid n \ge 0 \}, \\ \{ww^R \mid \\ w \in \{0,1\}^* \} \end{cases} $	$ \begin{cases} \{0^n 1^n 0^n \mid \\ n \geq 0\}, \\ A_{DFA}, \\ A_{CFG} \end{cases} $	A_{TM} , A_{H} , E_{TM}

(Chomsky also studied context-sensitive languages (CSLs, e.g. $a^nb^n\,c^n$), a subset of decidable languages recognized by linear-bounded automata (LBA))

R. Rao, CSE 322

The Chomsky Hierarchy – Then & Now...



Noam Chomsky

U.S. interventionism in the developing world

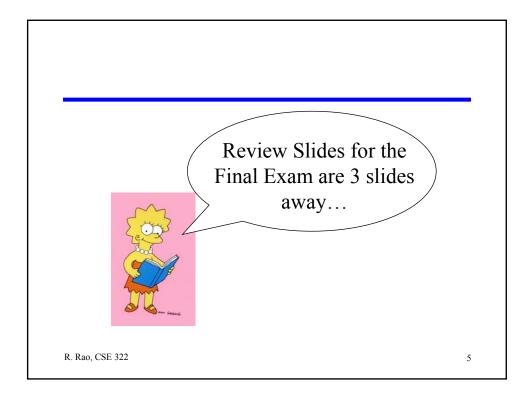
Political economy of human rights

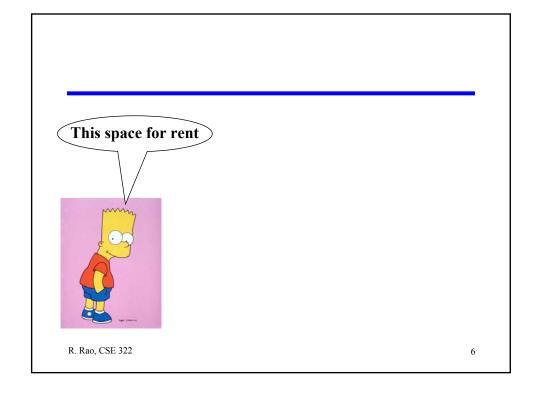
Propaganda role of corporate media

Now

R. Rao, CSE 322

4



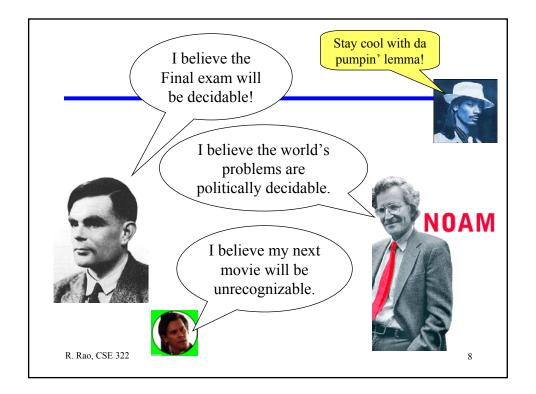


St.

Final Exam

- ◆ Details regarding the Final Exam
 - ❖ When: Monday, Dec 13, 2004 from 2:30-4:20 p.m.
 - ⇒ Where: Same classroom (MGH 231)
 - ⇒ What will it cover?
 - ♦ Chapters 0-4 and Chapter 5: pages 171-176.
 - ▶ Emphasis will be on material covered after midterm (Chapter 2 and beyond)
 - ♦ You may bring 1 page of notes (8 ½" x 11" sheet!)
 - Plus your midterm page of notes (if you wish)
 - ♦ Approximately 6 questions
 - ⇒ How do I ace it?
 - ▶ Practice, practice!
 - See class website for sample final exam and solutions

R. Rao, CSE 322 7



Review of Chapters 0-1

- See Midterm Review Slides
 - **⇒** Emphasis on:
 - ♦ Sets, strings, and languages
 - ♦ Operations on strings/languages (concat, *, union, etc)
 - ▶ Lexicographic ordering of strings
 - ▶ DFAs and NFAs: definitions and how they work
 - ▶ Regular languages and properties
 - ▶ Regular expressions and GNFAs (see lecture slides)
 - ▶ Pumping lemma for regular languages and showing nonregularity

R. Rao, CSE 322

Context-Free Grammars (CFGs)

- \bullet CFG G = (V, Σ , R, S)
 - ⇒ Variables, Terminals, Rules, Start variable
 - \Rightarrow uAv yields uwv if A \rightarrow w is a rule in G: Written as uAv \Rightarrow uwv
 - \Rightarrow u \Rightarrow * v if u yields v in 0, 1, or more steps
 - \Rightarrow L(G) = {w | S \Rightarrow * w}
 - ⇒ CFGs for regular languages: Convert DFA to a CFG (Create variables for states and rules to simulate transitions)
- ◆ Ambiguity: Grammar G is ambiguous if G has two or more parse trees for some string w in L(G)
 - See lecture notes/text/homework for examples
- ◆ Closure properties of Context-Free languages
 - \Rightarrow Closed under \cup , concat, * but not \cap or complementation.
 - ⇒ See homework and lecture slides

Pushdown Automata (PDA)

- ♦ PDA P = (Q, Σ, Γ, δ, q_0 , F)
 - \Rightarrow Q = set of states
 - $\Rightarrow \Sigma = \text{input alphabet}$
 - \Rightarrow Γ = stack alphabet
 - \Rightarrow q₀ = start state
 - \Rightarrow F \subseteq Q = set of accept states
 - $\Rightarrow \text{ Transition function } \delta \colon Q \times \Sigma_{\epsilon} \times \Gamma_{\epsilon} \to \text{Pow}(Q \times \Gamma_{\epsilon})$

 - \Rightarrow Input/popped/pushed symbol can be ϵ
- ◆ Example PDAs for:
 - \Rightarrow {w#w^R| w ∈ {0,1}*}, {ww^R| w ∈ {0,1}*}, Palindromes

R. Rao, CSE 322

Context-Free Languages: Main Results

- ◆ CFGs and PDAs are equivalent in computational power
 - ⇒ Generate/recognize the same class of languages (CFLs)
 - 1. If L = L(G) for some CFG G, then L = L(M) for some PDA M
 - Know how to convert a given CFG to a PDA
 - 2. If L = L(M) for some PDA M, then L = L(G) for some CFG G
 - ♦ Be familiar with the construction no need to memorize the induction proof
- Pumping Lemma for CFLs
 - \Rightarrow Know the exact statement: L CFL $\Rightarrow \exists p \text{ s.t. } \forall s \text{ in L s.t. } |s| \ge p$, $\exists u, v, x, y, \text{ and } z \text{ s.t. } s = uvxyz \text{ and:}$ 1. $uv^i x y^i z \in L \ \forall i \ge 0$, 2. $|vy| \ge 1$, and 3. $|vxy| \le p$.

12

- Using the PL to show languages are not CFLs
 - \Rightarrow E.g. $\{0^n1^n0^n \mid n \ge 0\}$ and $\{0^n \mid n \text{ is a prime number}\}$

Turing Machines: Definition and Operation

- ♦ TM M = (Q, Σ , Γ , δ , q_0 , q_{ACC} , q_{REJ})
 - \Rightarrow Q = set of states
 - \Rightarrow Σ = input alphabet not containing blank symbol "_"
 - \Rightarrow Γ = tape alphabet containing blank "_", all symbols in Σ , plus possible temporary variables such as X, Y, etc.
 - \Rightarrow q₀ = start state
 - \Rightarrow q_{ACC} = accept and halt state
 - \Rightarrow q_{REJ} = reject and halt state
 - \Rightarrow Transition function $\delta: Q \times \Gamma \to Q \times \Gamma \times \{L, R\}$
- δ (current state, symbol under the head) = (next state, symbol to write over current symbol, direction of head movement)
 - Configurations of a TM, definition of language L(M) of a TM M

R. Rao, CSE 322

Decidable versus Recognizable Languages

- ♦ A language is Turing-recognizable if there is a Turing machine M such that L(M) = L
 - ⇒ For all strings in L, M halts in state q_{ACC}
 - \Rightarrow For strings not in L, M may either halt in q_{REI} or loop forever
- ◆ A language is decidable if there is a "decider" Turing machine M that halts on all inputs such that L(M) = L
 - \Rightarrow For all strings in L, M halts in state q_{ACC}
 - \Rightarrow For all strings not in L, M halts in state q_{REJ}
- ◆ Showing a language is decidable by construction:
 - *→ Implementation level description of deciders*
 - \Rightarrow E.g. $\{0^n1^n0^n \mid n \ge 0\}$, $\{0^n \mid n = m^2 \text{ for some integer m}\}$, see text

Equivalence of TM Types & Church-Turing Thesis

- ◆ Varieties of TMs: Know the definition, operation, and idea behind proof of equivalence with standard TM
 - ⇒ Multi-Tape TMs: TM with k tapes and k heads
 - ⇒ Nondeterministic TMs (NTMs)
 - Decider if all branches halt on all inputs
 - ⇒ Enumerator TM for L: Prints all strings in L (in any order, possibly with repetitions) and only the strings in L
- → Can use any of these variants for showing a language is Turing-recognizable or decidable
- <u>Church-Turing Thesis (not a theorem!)</u>: Any formal definition of "algorithms" or "programs" is equivalent to Turing machines

R. Rao, CSE 322

Decidable Problems

- ◆ Any problem can be cast as a language membership problem
 - ⇒ Does DFA D accept input w? Equivalent to:
 Is <D,w> in A_{DFA} = {<D,w> | D is a DFA that accepts input w}?
- Decidable problems concerning languages and machines:
 - $\Rightarrow A_{DFA}$
 - \Rightarrow A_{NFA} = {<N,w> | N is a NFA that accepts input w}
 - \Rightarrow A_{REX} = {<R,w> | R is a reg. exp. that generates string w}
 - \Rightarrow A_{emoty-DFA} = {<D> | D is a DFA and L(D) = \varnothing }
 - \Rightarrow A_{Equal-DFA} = {<C,D> | C and D are DFAs and L(C) = L(D)}
 - \Rightarrow A_{CFG} = {<G,w> | G is a CFG that generates string w}
 - \Rightarrow A_{empty-CFG} = {<G> | G is a CFG and L(G) = \varnothing }

Undecidability, Reducibility, Unrecognizability

- ◆ A_{TM} = {<M,w> | M is a TM and M accepts w} is Turing-recognizable but not decidable (Proof by diagonalization)
- ♦ To show a problem A is undecidable, reduce A_{TM} to A
 - ⇒ Show that if A was decidable, then you can use the decider for A as a *subroutine* to decide A_{TM}
 - ⇒ E.g. Halting problem = "Does a program halt for an input or go into an infinite loop?"
 - \Rightarrow Can show that the Halting problem is undecidable by reducing A_{TM} to $A_{H} = \{ \langle M, w \rangle \mid TM M \text{ halts on input } w \}$
- \bullet A is decidable iff A and \overline{A} are both Turing-recognizable
 - \Rightarrow Corollary: \overline{A}_{TM} and \overline{A}_{H} are not Turing-recognizable