Pumping Lemma Recap

- ♦ Formal Statement of the Pumping Lemma: If L is regular, then \exists p such that \forall *s* in L with $|s| \ge p$, \exists *x*, *y*, *z* with s = xyz and:
 - 1. $xy^iz \in L \ \forall \ i \ge 0$, and
 - 2. $|y| \ge 1$, and
 - 3. $|xy| \le p$.
- Proof on board last time...(see also page 79 in textbook)
- Proved in 1961 by Bar-Hillel, Peries and Shamir

R. Rao, CSE 322

Pumping Lemma in Plain English

- ♦ Let L be a regular language and let p = "pumping length" = no. of states of a DFA accepting L
- ♦ Then, any string s in L of length \ge p can be expressed as s = xyz where:
 - \Rightarrow y is not empty (y is the cycle)
 - \Rightarrow $|xy| \le p$ (cycle occurs within p state transitions), and
 - \Rightarrow any "pumped" string xy^iz is also in L for all $i \ge 0$ (go through the cycle 0 or more times)

Using The Pumping Lemma

- ◆ In-Class Examples: Using the Pumping Lemma to show a language L is *not regular*
 - ⇒ 5 steps for a proof by contradiction:
 - 1. Assume L is regular. Then, L satisfies the P. Lemma.
 - 2. Let p be the pumping length given by the P. Lemma.
 - 3. Choose cleverly an s in L of length at least p, such that:
 - 4. For all ways of decomposing s into xyz, where $|xy| \le p$ and y is not empty,
 - 5. There is an $i \ge 0$ such that xy^iz is not in L.

R. Rao, CSE 322

Proving non-regularity as a Two-Person game

- ◆ An alternate view: Think of it as a *game between you and an opponent (JC)*:
 - 1. You: Assume L is regular
 - 2. JC: Chooses some value p
 - **3.** You: Choose cleverly an s in L of length $\geq p$
 - **4. JC**: Breaks *s* into some *xyz*, where $|xy| \le p$ and *y* is not empty,
 - **5. You**: Need to choose an $i \ge 0$ such that xy^iz is not in L (in order to win (the prize of non-regularity)!)

(Note: Your *i* should work for all *xyz* that JC chooses, given your *s*)

Proving Non-Regularity using the Pumping Lemma

- Examples: Show the following are not regular
 - \Rightarrow L₁ = {0ⁿ1ⁿ | n \ge 0} over the alphabet {0, 1}
 - \Rightarrow L₂ = {w | w contains equal number of 0s and 1s} over the alphabet {0, 1}
 - \Rightarrow L₃ = {0ⁿ1^m | n > m} over the alphabet {0, 1}
 - \Rightarrow ADD = {x=y+z | x, y, z are binary numbers and x is the sum of y and z} over the alphabet {0, 1, =, +}
 - ⇒ SQUARES = $\{0^m \mid m = n^2 \text{ for some } n \ge 0\}$ over alphabet $\{0\}$ (see textbook for the proof)

R. Rao, CSE 322

Da Pumpin' Lemma

(Orig. lyrics: Harry Mairson)

Hear it on my new album: Dig dat funky DFA

Any regular language L has a magic numba pAnd any long-enuff word s in L has da followin' propa'ty: Amongst its first p symbols is a segment you can find Whoz repetition or omission leaves s amongst its kind.

So if ya find a language L which fails dis acid test, And some long word ya pump becomes distinct from all da rest, By contradiction you have shown dat language L is not A regular homie, resilient to the damage you've caused.

But if, upon the other hand, s stays within its L, Then either L is regulah, or else you chose not well. For s is xyz, where y cannot be empty, And y must come before da p+1th symbol is read.

R. Rao, CSE 322 Based on: http://www.cs.brandeis.edu/~mairson/poems/node1.html

If $\{0^n1^n \mid n \ge 0\}$ is not Regular, what is it?

Enter...the world of Grammars (after the Midterm)

R. Rao, CSE 322

CSE 322: Midterm Review

- **♦ Basic Concepts** (Chapter 0)
 - ⇒ Sets
 - Notation and Definitions
 - $A = \{x \mid \text{rule about } x\}, x \in A, A \subseteq B, A = B$
 - \exists ("there exists"), \forall ("for all")
 - ▶ Finite and Infinite Sets
 - Set of natural numbers N, integers Z, reals R etc.
 - Empty set ∅
 - Set operations: Know the definitions for proofs
 - Union: $A \cup B = \{x \mid x \in A \text{ or } x \in B\}$
 - Intersection $A \cap B = \{x \mid x \in A \text{ and } x \in B\}$
 - Complement $\overline{A} = \{x \mid x \notin A\}$

Basic Concepts (cont.)

- Set operations (cont.)
 - \Rightarrow Power set of A = Pow(A) or 2^A = set of all subsets of A
 - \bullet E.g. A = {0,1} \Rightarrow 2^A = { \emptyset , {0}, {1}, {0,1}}
 - \Rightarrow Cartesian Product $A \times B = \{(a,b) \mid a \in A \text{ and } b \in B\}$
- Functions:
 - \Rightarrow f: Domain \rightarrow Range
 - $Add(x,y) = x + y \Rightarrow Add: Z \times Z \rightarrow Z$
 - ⇒ Definitions of 1-1 and onto (bijection if both)

R. Rao, CSE 322

Strings

- Alphabet Σ = finite set of symbols, e.g. Σ = {0,1}
- ♦ String $w = \text{finite sequence of symbols} \in \sum$ $\Rightarrow w = w_1 w_2 ... w_n$
- String properties: Know the definitions
 - \Rightarrow Length of w = |w| $(|w| = n \text{ if } w = w_1 w_2 \dots w_n)$
 - \Rightarrow Empty string = ε (length of $\varepsilon = 0$)
 - ⇒ Substring of w
 - \Rightarrow Reverse of $w = w^R = w_n w_{n-1} ... w_1$
 - \Rightarrow Concatenation of strings x and y (append y to x)
 - \Rightarrow y^k = concatenate y to itself to get string of k y's
 - Lexicographical order = order based on length and dictionary order within equal length

Languages and Proof Techniques

- ♦ Language L = set of strings over an alphabet (i.e. $L \subseteq \Sigma^*$)
 - \Rightarrow E.g. L = $\{0^n 1^n \mid n \ge 0\}$ over $\Sigma = \{0,1\}$
 - \Rightarrow E.g. L = {p | p is a syntactically correct C++ program} over Σ = ASCII characters
- Proof Techniques: Look at lecture slides, handouts, and notes
 - 1. Proof by counterexample
 - 2. Proof by contradiction
 - 3. Proof of set equalities (A = B)
 - 4. Proof of "iff" $(X \Leftrightarrow Y)$ statements (prove both $X \Rightarrow Y$ and $X \Leftarrow Y$)
 - 5. Proof by construction
 - 6. Proof by induction
 - 7. Pigeonhole principle
 - 8. Dovetailing to prove a set is countably infinite E.g. Z or $N \times N$
 - 9. Diagonalization to prove a set is uncountable E.g. 2^N or Reals

R. Rao, CSE 322

Chapter 1 Review: Languages and Machines

Languages and Machines (Chapter 1)

- ♦ Language = set of strings over an alphabet
 - \Rightarrow Empty language = language with no strings = \emptyset
 - \Rightarrow Language containing only empty string = $\{\epsilon\}$
- DFAs
 - \Rightarrow Formal definition M = (Q, Σ , δ , q₀, F)
 - Set of states Q, alphabet Σ , start state q_0 , accept ("final") states F, transition function $\delta: Q \times \Sigma \to Q$
 - \Rightarrow M recognizes language L(M) = {w | M accepts w}
 - ❖ In class examples:
 - E.g. DFA for $L(M) = \{w \mid w \text{ ends in } 0\}$
 - E.g. DFA for $L(M) = \{w \mid w \text{ does not contain } 00\}$
 - E.g. DFA for $L(M) = \{w \mid w \text{ contains an even } \# \text{ of } 0\text{'s}\}\$

Try: DFA for $L(M) = \{w \mid w \text{ contains an even } \# \text{ of } 0\text{'s and an odd number of } 1\text{'s}\}$

R. Rao, CSE 322

Languages and Machines (cont.)

- Regular Language = language recognized by a DFA
- Regular operations: Union ∪, Concatenation ∘ and star *
 - \Rightarrow Know the definitions of A \cup B, A₀B and A*
 - $\Rightarrow \Sigma = \{0,1\} \Rightarrow \Sigma^* = \{\epsilon, 0, 1, 00, 01, ...\}$
- Regular languages are closed under the regular operations
 - \Rightarrow Means: If A and B are regular languages, we can show A \cup B, A \circ B and A* (and also B*) are regular languages
 - \Rightarrow Cartesian product construction for showing $A \cup B$ is regular by simulating DFAs for A and B in parallel
- Other related operations: $A \cap B$ and complement \overline{A}
 - ❖ Are regular languages closed under these operations?

NFAs, Regular expressions, and GNFAs

- NFAs vs DFAs
 - \Rightarrow DFA: $\delta(\text{state,symbol}) = \text{next state}$
 - \Rightarrow NFA: δ(state,symbol or ε) = set of next states
 - Features: Missing outgoing edges for one or more symbols, multiple outgoing edges for same symbol, ε-edges
 - ⇒ Definition of: NFA N accepts a string $w \in \Sigma^*$
 - ⇒ Definition of: NFA N recognizes a language $L(N) \subseteq \Sigma^*$
 - \Rightarrow E.g. NFA for L = {w | w = x1a, x \in \sum \times and a \in \Sigma} and \text{ and } a \in \Sigma}
- ♦ Regular expressions: Base cases ε , \emptyset , $a \in \Sigma$, and R1 \cup R2, R1°R2 or R1*
- ♦ GNFAs = NFAs with edges labeled by regular expressions
 ♦ Used for converting NFAs/DFAs to regular expressions

R. Rao, CSE 322

Main Results and Proofs

- L is a Regular Language iff
 - L is recognized by a DFA iff
 - L is recognized by an NFA iff
 - ⇒ L is recognized by a GNFA iff
 - ⇒ L is described by a Regular Expression
- Proofs:
 - ❖ NFA→DFA: subset construction (1 DFA state=subset of NFA states)
 - ⇒ DFA→GNFA→Reg Exp: Repeat two steps:
 - 1. Collapse two parallel edges to one edge labeled (a \cup b), and
 - 2. Replace edges through a state with a loop with one edge labeled (ab*c)
 - \Rightarrow Reg Exp \rightarrow NFA: combine NFAs for base cases with ϵ -transitions

Other Results

- Using NFAs to show that Regular Languages are closed under:
 - \Rightarrow Regular operations \cup , \circ and *
- Are Regular Languages closed under:
 - ⇒ intersection?
 - ⇒ complement (Exercise 1.10)?
- Are there other operations that regular languages are closed under?

Other Results

- Are Regular languages closed under:
 - ⇒ reversal?
 - \Rightarrow subset (\subset)?
 - \Rightarrow superset (\supseteq) ?
 - ❖ Prefix?

Prefix(L) = $\{w \mid w \in \Sigma^* \text{ and } wx \in L \text{ for some } x \in \Sigma^*\}$

 \Rightarrow NoExtend? NoExtend(L) = { w | w ∈ L but wx ∉ L for all x ∈ Σ*-{ε}} (see also Problem 1.32 in the text)

R. Rao, CSE 322

Pumping Lemma

- ♦ Pumping lemma in plain English (sort of): If L is regular, then there is a p (= number of states of a DFA accepting L) such that any string s in L of length ≥ p can be expressed as s = xyz where y is not null (y is the loop in the DFA), $|xy| \le p$ (loop occurs within p state transitions), and any "pumped" string xy^iz is in L for all $i \ge 0$ (go through the loop 0 or more times).
- ♦ Pumping lemma in plain Logic: L regular ⇒ $\exists p \text{ s.t. } (\forall s \in L \text{ s.t. } |s| \ge p (\exists x,y,z \in \Sigma^* \text{ s.t. } (s = xyz)$ and $(|y| \ge 1)$ and $(|xy| \le p)$ and $(\forall i \ge 0, xy^iz \in L)))$
- ♦ Is the other direction also true?
 No! See Problem 1.37 for a counterexample

Proving Non-Regularity using the Pumping Lemma

- Proof by contradiction to show L is not regular
 - 1. Assume L is regular. Then L must satisfy the P. Lemma.
 - 2. Let p be the "pumping length"
 - 3. Choose a long enough string $s \in L$ such that $|s| \ge p$
 - 4. Let x,y,z be strings such that s = xyz, $|y| \ge 1$, and $|xy| \le p$
 - 5. Pick an $i \ge 0$ such that $xy^iz \notin L$ (for all possible x,y,z as in 4) This contradicts the P. lemma. Therefore, L is not regular
- ♦ Examples: $\{0^n1^n|n \ge 0\}$, $\{ww|w \in \Sigma^*\}$, $\{0^m|m=n^2\}$, ADD = $\{x=y+z \mid x, y, z \text{ are binary numbers and } x \text{ is sum of } y \text{ and } z\}$
- Can sometimes also use closure under ∩ (and/or complement)
 - \Rightarrow E.g. If $L \cap B = L_1$, and B is regular while L_1 is not regular, then L is also not regular (if L was regular, L_1 would be regular)

R. Rao, CSE 322 2

Some Applications of Regular Languages

- Pattern matching and searching:
 - ⇒ E.g. In Unix:
 - ▶ ls *.c
 - cp /myfriends/games/*.* /mydir/
 - grep 'Spock' *trek.txt
- Compilers:
 - ⇒ id ::= letter (letter | digit)*
 - ⇒ int ::= digit digit*
 - \Rightarrow float ::= d d*.d*(ϵ |E d d*)
 - ⇒ The symbol | stands for "or" (= union)

Good luck on the midterm on Wednesday!

- ♦ You can bring one 8 1/2" x 11" review sheet (double-sided ok)
- ♦ The questions sheet will have space for answers. We will also bring extra blank sheets for those of you who don't believe in brevity.

Don't sweat it!

- Go through the homeworks, lecture slides, and examples in the text (<u>Chapters 0 and 1 only</u>)
- Do the practice midterm on the website and avoid being surprised!

R. Rao, CSE 322

23