
1R. Rao, CSE 322

The Church-Turing Thesis

✦ Various definitions of “algorithms” were shown to be
equivalent in the 1930s

✦ Church-Turing Thesis: “The intuitive notion of algorithms
equals Turing machine algorithms”

� Turing machines serve as a precise formal model for the
intuitive notion of an algorithm

✦ “Any computation on a digital computer is equivalent to
computation in a Turing machine”

Dude, that’s
pretty deep…

2R. Rao, CSE 322

Closure Properties of Decidable Languages

✦ Decidable languages are closed under ∪, °, * , ∩, and
complement

✦ Example: Closure under ∪
✦ Need to show that union of 2 decidable L’s is also decidable

Let M1 be a decider for L1 and M2 a decider for L2
A decider M for L1 ∪ L2:

On input w:
1. Simulate M1 on w. If M1 accepts, then ACCEPT w. Otherwise,

go to step 2 (because M1 has halted and rejected w)
2. Simulate M2 on w. If M2 accepts, ACCEPT w else REJECT w.

M accepts w iff M1 accepts w OR M2 accepts w
i.e. L(M) = L1 ∪ L2

3R. Rao, CSE 322

✦ Consider the proof for closure under ∪
A decider M for L1 ∪ L2:

On input w:
1. Simulate M1 on w. If M1 accepts, then ACCEPT w. Otherwise,

go to step 2 (because M1 has halted and rejected w)
2. Simulate M2 on w. If M2 accepts, ACCEPT w else REJECT w.

M accepts w iff M1 accepts w OR M2 accepts w
i.e. L(M) = L1 ∪ L2

Will this proof work for showing Turing-recognizable
languages are closed under ∪∪∪∪? Why/Why not?

Uh…I dunno.
Wait, will M1
always halt?!

Closure Properties of Decidable Languages

4R. Rao, CSE 322

Closure for Recognizable Languages

✦ Turing-Recognizable languages are closed under ∪, °, * , and ∩
(but not complement! We will see this in a later lecture)

✦ Example: Closure under ∩
Let M1 be a TM for L1 and M2 a TM for L2 (both may loop)
A TM M for L1 ∩ L2:

On input w:
1. Simulate M1 on w. If M1 halts and accepts w, go to step 2. If

M1 halts and rejects w, then REJECT w. (If M1 loops, then M
will also loop and thus reject w)

2. Simulate M2 on w. If M2 halts and accepts, ACCEPT w. If M2
halts and rejects, then REJECT w. (If M2 loops, then M
will also loop and thus reject w)

M accepts w iff M1 accepts w AND M2 accepts w i.e. L(M) = L1∩L2

