The Church-Turing Thesis

- Various definitions of "algorithms" were shown to be equivalent in the 1930s
- Church-Turing Thesis: "The intuitive notion of algorithms equals Turing machine algorithms"
\Rightarrow Turing machines serve as a precise formal model for the intuitive notion of an algorithm
- "Any computation on a digital computer is equivalent to computation in a Turing machine"

Closure Properties of Decidable Languages

- Decidable languages are closed under $\cup,{ }^{\circ}, *, \cap$, and complement
- Example: Closure under \cup
\uparrow Need to show that union of 2 decidable L's is also decidable
Let M1 be a decider for L1 and M2 a decider for L2
A decider M for $\mathrm{L} 1 \cup \mathrm{~L} 2$:
On input w:

1. Simulate M1 on w. If M1 accepts, then ACCEPT w. Otherwise, go to step 2 (because M1 has halted and rejected w)
2. Simulate M2 on w. If M2 accepts, ACCEPT w else REJECT w. M accepts w iff M1 accepts w OR M2 accepts w i.e. $\mathrm{L}(\mathrm{M})=\mathrm{L} 1 \cup \mathrm{~L} 2$

Closure Properties of Decidable Languages

\leftrightarrow Consider the proof for closure under \cup
A decider M for $\mathrm{L} 1 \cup \mathrm{~L} 2$:
On input w:

1. Simulate M1 on w. If M1 accepts, then ACCEPT w. Otherwise, go to step 2 (because M1 has halted and rejected w)
2. Simulate M2 on w. If M2 accepts, ACCEPT w else REJECT w. M accepts w iff M1 accepts w OR M2 accepts w i.e. $\mathrm{L}(\mathrm{M})=\mathrm{L} 1 \cup \mathrm{~L} 2$

Will this proof work for showing Turing-recognizable languages are closed under \cup ? Why/Why not?

Closure for Recognizable Languages

- Turing-Recognizable languages are closed under $\cup,{ }^{\circ}$, ${ }^{*}$, and \cap (but not complement! We will see this in a later lecture)
- Example: Closure under \cap

Let M1 be a TM for L1 and M2 a TM for L2 (both may loop)
A TM M for $\mathrm{L} 1 \cap \mathrm{~L} 2$:
On input w:

1. Simulate M1 on w. If M1 halts and accepts w, go to step 2. If M1 halts and rejects w, then REJECT w. (If M1 loops, then M will also loop and thus reject w)
2. Simulate M2 on w. If M2 halts and accepts, ACCEPT w. If M2 halts and rejects, then REJECT w. (If M2 loops, then M will also loop and thus reject w)
M accepts w iff M1 accepts w AND M2 accepts w i.e. $\mathrm{L}(\mathrm{M})=\mathrm{L} 1 \cap \mathrm{~L} 2$
