Turing Machines Review

- An example of a decidable language that is not a CFL
\Rightarrow Implementation-level description of a TM
\Rightarrow State diagram of TM
- Varieties of TMs
\Rightarrow Multi-Tape TMs
\Rightarrow Nondeterministic TMs
\Rightarrow String Enumerators

Turing Machines

Just like a DFA except:
\Rightarrow You have an infinite "tape" memory (or scratchpad) on which you receive your input and on which you can do your calculations
\Rightarrow You can read one symbol at a time from a cell on the tape, write one symbol, then move the read/write pointer (head) left (L) or right (R)

Who was Turing?

- Alan Turing (1912-1954): one of the

R. Rao, CSE 322 most brilliant mathematicians of the $20^{\text {th }}$ century (one of the "founding fathers" of computing)
- Click on "Theory Hall of Fame" link on class web under "Lectures"
- Introduced the Turing machine as a formal model of what it means to compute and solve a problem (i.e. an "algorithm")
\Rightarrow Paper: On computable numbers, with an application to the Entscheidungsproblem, Proc. London Math. Soc. 42 (1936).

How do Turing Machines compute?

$\uparrow \delta($ current state, symbol under the head $)=($ next state, symbol to write over current symbol, direction of head movement)

\uparrow Diagram shows: $\boldsymbol{\delta}\left(\mathbf{q}_{1}, \mathbf{1}\right)=\left(\mathbf{q}_{\text {rej }}, \mathbf{0}, \mathbf{L}\right) \quad(\mathrm{R}=$ right, $\mathrm{L}=$ left $)$
\star In terms of "Configurations": $110 \mathrm{q}_{1} 10 \Rightarrow 11 \mathrm{q}_{\mathrm{rej}} 000$
R. Rao, CSE 322

Solving Problems with Turing Machines

- We know $\mathrm{L}=\left\{0^{\mathrm{n}} 1^{\mathrm{n}} 0^{\mathrm{n}} \mid \mathrm{n} \geq 0\right\}$ is not a CFL (pumping lemma)
- Show L is decidable
\Rightarrow Construct a decider M such that $L(M)=L$
\Rightarrow A decider is a TM that always halts (in $\mathrm{q}_{\mathrm{acc}}$ or $\mathrm{q}_{\mathrm{rej}}$) and is guaranteed not to go into an infinite loop for any input

Idea for a Decider for $\left\{0^{\mathrm{n}} 1^{\mathrm{n}} 0^{\mathrm{n}} \mid \mathrm{n} \geq 0\right\}$

- General Idea: Match each 0 with a 1 and a 0 following the 1.
- Implementation Level Description of a Decider for L:

On input w:

1. If first symbol = blank, ACCEPT
2. If first symbol $=1$, REJECT
3. If first symbol $=0$, Write a blank to mark left end of tape
a. If current symbol is 0 or X , skip until it is 1. REJECT if blank.
b. Write X over 1. Skip 1's/X's until you see 0. REJECT if blank.
c. Write X over 0 . Move back to left end of tape.
4. At left end: Skip X's until:
a. You see 0 : Write X over 0 and GOTO 3a
b. You see 1: REJECT
c. You see a blank space: ACCEPT

State Diagram

- Try running the decider on:
$\Rightarrow 010,001100, \ldots$ ACCEPT
$\Rightarrow 0,000,0100, \ldots$ REJECT
\Rightarrow What about 010010 ?
R. Rao, CSE 322

What's the problem?

- The decider accepts incorrect strings:
\Rightarrow 010010, 010001100 ACCEPT!!!
\Rightarrow Accepts $\left(0^{\mathrm{n}} 1^{\mathrm{n}} 0^{\mathrm{n}}\right)^{*}$
R. Rao, CSE 322

Need to fix it...How??

A Simple Fix (to the Decider)

- Scan initially to make sure string is of the form $0^{*} 1^{*} 0^{*}$
- On input w:

1. If first symbol = blank, ACCEPT

Add this
2. If first symbol $=1$, REJECT
3. If first symbol $=0$: if w is not in $00 * 11 * 00 *$, REJECT; else, Write a blank to mark left end of tape
a. If current symbol is 0 or X , skip until it is 1 . REJECT if blank.
b. Write X over 1 . Skip 1 's/X's until you see 0 . REJECT if blank.
c. Write X over 0 . Move back to left end of tape.
4. At left end: Skip X's until:
a. You see 0: Write X over 0 and GOTO 3a
b. You see 1: REJECT
c. You see a blank space: ACCEPT

The Decider TM for L in all its glory

Varieties of TMs

Various Types of TMs

- Multi-Tape TMs: TM with k tapes and k heads
$\Rightarrow \delta: \mathrm{Q} \times \Gamma^{\mathrm{k}} \rightarrow \mathrm{Q} \times \Gamma^{\mathrm{k}} \times\{\mathrm{L}, \mathrm{R}\}^{\mathrm{k}}$
$\Rightarrow \delta\left(q_{i}, a_{1}, \ldots, a_{k}\right)=\left(q_{j}, b_{1}, \ldots, b_{k}, L, R, \ldots, L\right)$
- Nondeterministic TMs (NTMs)
$\Rightarrow \delta: Q \times \Gamma \rightarrow \operatorname{Pow}(Q \times \Gamma \times\{L, R\})$
$\Rightarrow \delta\left(\mathrm{q}_{\mathrm{i}}, \mathrm{a}\right)=\left\{\left(\mathrm{q}_{1}, \mathrm{~b}, \mathrm{R}\right),\left(\mathrm{q}_{2}, \mathrm{c}, \mathrm{L}\right), \ldots,\left(\mathrm{q}_{\mathrm{m}}, \mathrm{d}, \mathrm{R}\right)\right\}$
\uparrow Enumerator TM for L: Prints all strings in L (in any order, possibly with repetitions) and only the strings in L
- Other types: TM with Two-way infinite tape, TM with multiple heads on a single tape, 2D infinite tape TM, Random Access Memory (RAM) TM, etc.

Surprise!
 All TMs are born equal...

- Each of the preceding TMs is equivalent to the standard TM \Rightarrow They recognize the same set of languages (the Turingrecognizable languages)
- Proof idea: Simulate the "deviant" TM using a standard TM
- Example 1: Multi-tape TM on a standard TM
\Rightarrow Represent k tapes sequentially on 1 tape using separators \#
\Rightarrow Use new symbol \underline{a} to denote a head currently on symbol a
$01 \ldots \ldots \ldots$.

(See text for details)

Example 2: Simulating Nondeterminism

- Any nondeterministic TM N can be simulated by a deterministic TM M \Rightarrow NTMs: $\delta: \mathrm{Q} \times \Gamma \rightarrow \operatorname{Pow}(\mathrm{Q} \times \Gamma \times\{\mathrm{L}, \mathrm{R}\})$ \Rightarrow No ε transitions but can simulate them by reading and writing same symbol
$\Rightarrow \mathrm{N}$ accepts w iff there is at least 1 path in N 's tree for w ending in $q_{\text {ACC }}$
- General proof idea: Simulate each branch sequentially
\Rightarrow Proof idea 1: Use depth first search? No, might go deep into an infinite branch and never explore other branches!
\Rightarrow Proof idea 2: Use breadth first search Explore all branches at depth n before $n+1$

Simulating Nondeterminism: Details, Details

- Use a 3-tape DTM M for breadthfirst traversal of N's tree on w:
\Rightarrow Tape 1 keeps the input string w
\Rightarrow Tape 2 stores N's tape during simulation along 1 path (given by tape 3) up to a particular depth, starting with w
\Rightarrow Tape 3 stores current path number E.g. $\varepsilon=$ root node q_{0} $213=$ path made up of $3^{\text {rd }}$ child of $1^{\text {st }}$ child of $2^{\text {nd }}$ child of root
- See text for more details

