What's on our platter today?

- Cliff's notes for equivalence of CFGs and PDAs
$\Rightarrow L=L(G)$ for some $C F G G \Rightarrow L=L(M)$ for some PDA M
$\Rightarrow L=L(M)$ for some PDA $M \Rightarrow L=L(G)$ for some CFG G
\checkmark Pumping Lemma (one last time)
\Rightarrow Statement of Pumping Lemma for CFLs
\Rightarrow Application: Showing a given L is not a CFL

Review: From CFGs to PDAs

- L is a $\mathrm{CFL} \Rightarrow \mathrm{L}=\mathrm{L}(\mathrm{M})$ for some PDA M
- Proof Summary:
$\Rightarrow L$ is a CFL means $L=L(G)$ for some $C F G G=(V, \Sigma, R, S)$
\Rightarrow Construct PDA M $=\left(\mathrm{Q}, \Sigma, \Gamma, \delta, \mathrm{q}_{0},\left\{\mathrm{q}_{\text {acc }}\right\}\right)$ M has only 4 main states (plus a few more for pushing strings) $\mathrm{Q}=\left\{\mathrm{q}_{0}, \mathrm{q}_{1}, \mathrm{q}_{2}, \mathrm{q}_{\text {acc }}\right\} \cup \mathrm{E}$ where E are states used in 2 below
$\Rightarrow \delta$ has 4 components:

1. Init. Stack: $\delta\left(\mathrm{q}_{0}, \varepsilon, \varepsilon\right)=\left\{\left(\mathrm{q}_{1}, \$\right)\right\}$ and $\delta\left(\mathrm{q}_{1}, \varepsilon, \varepsilon\right)=\left\{\left(\mathrm{q}_{2}, \mathrm{~S}\right)\right\}$
2. Push \& generate strings: $\delta\left(\mathrm{q}_{2}, \varepsilon, \mathrm{~A}\right)=\left\{\left(\mathrm{q}_{2}, \mathrm{w}\right)\right\}$ for $\mathrm{A} \rightarrow \mathrm{w}$ in R
3. Pop \& match to input: $\delta\left(\mathrm{q}_{2}, \mathrm{a}, \mathrm{a}\right)=\left\{\left(\mathrm{q}_{2}, \varepsilon\right)\right\}$
4. Accept if stack empty: $\delta\left(\mathrm{q}_{2}, \varepsilon, \$\right)=\left\{\left(\mathrm{q}_{\mathrm{acc}}, \varepsilon\right)\right\}$
\rightarrow Can prove by induction: $w \in \operatorname{Liff} w \in L(M)$

Review: From PDAs to CFGs

$\rightarrow \mathrm{L}=\mathrm{L}(\mathrm{M})$ for some PDA $\mathrm{M} \Rightarrow \mathrm{L}=\mathrm{L}(\mathrm{G})$ for some CFG G

- Proof Summary: Simulate M's computation using a CFG
\Rightarrow First, simplify M: 1. Only 1 accept state, 2. M empties stack before accepting, 3. Each transition either Push or Pop, not both or neither. Let $\mathrm{M}=\left(\mathrm{Q}, \Sigma, \Gamma, \delta, \mathrm{q}_{0},\left\{\mathrm{q}_{\text {acc }}\right\}\right)$
\Rightarrow Construct grammar $\mathrm{G}=(\mathrm{V}, \Sigma, \mathrm{R}, \mathrm{S})$
\Rightarrow Basic Idea: Define variables A_{pq} for simulating M
$\Rightarrow \mathrm{A}_{\mathrm{pq}}$ generates all strings w such that w takes M from state p with empty stack to state q with empty stack
\Rightarrow Then, $\mathrm{A}_{\text {qOqacc }}$ generates all strings w accepted by M

Review: From PDAs to CFGs (cont.)

- $\mathrm{L}=\mathrm{L}(\mathrm{M})$ for some PDA $\mathrm{M} \Rightarrow \mathrm{L}=\mathrm{L}(\mathrm{G})$ for some CFG G
- Proof (cont.)
\Rightarrow Construct grammar $G=(V, \Sigma, R, S)$ where

$$
\begin{aligned}
\mathrm{V} & =\left\{\mathrm{A}_{\mathrm{pq}} \mid \mathrm{p}, \mathrm{q} \in \mathrm{Q}\right) \\
\mathrm{S} & =\mathrm{A}_{\mathrm{qqqacc}} \\
\mathrm{R} & =\left\{\mathrm{A}_{\mathrm{pq}} \rightarrow \mathrm{aA} \mathrm{~A}_{\mathrm{rs}}|\mathrm{p}| \mathrm{p} \xrightarrow{\mathrm{a}, \varepsilon \rightarrow \mathrm{c} \xrightarrow{\mathrm{~A}} \xrightarrow[\mathrm{Hs}]{ } \mathrm{s} \xrightarrow{\mathrm{~b}, \mathrm{c} \rightarrow \varepsilon} \mathrm{q}\}}\right. \\
& \cup\left\{\mathrm{A}_{\mathrm{pq}} \rightarrow \mathrm{~A}_{\mathrm{pr}} \mathrm{~A}_{\mathrm{rq}} \mid \mathrm{p}, \mathrm{q}, \mathrm{r} \in \mathrm{Q}\right\} \\
& \cup\left\{\mathrm{A}_{\mathrm{qq}} \rightarrow \varepsilon \mid \mathrm{q} \in \mathrm{Q}\right\}
\end{aligned}
$$

- See text for proof by induction: w $\in L(M)$ iff $w \in L(G)$
\uparrow Try to get G from M where $L(M)=\left\{0^{\mathrm{n}} 1^{\mathrm{n}} \mid \mathrm{n} \geq 1\right\}$

Pumping Lemma for CFLs

- Intuition: If L is CF, then some CFG G produces strings in L
\Rightarrow If some string in L is very long, it will have a very tall parse tree
\Rightarrow If a parse tree is taller than the number of distinct variables in G, then some variable A repeats $\Rightarrow \mathrm{A}$ will have at least two sub-trees
\Rightarrow We can pump up the original string by replacing A's smaller subtree with larger, and pump down by replacing larger with smaller
- Pumping Lemma for CFLs in all its glory:
\Rightarrow If L is a CFL, then there is a number p (the "pumping length") such that for all strings s in L such that $|s| \geq \mathrm{p}$, there exist u, v, x, y, and z such that $s=u v x y z$ and:

1. $u v^{i} x y^{i} z \in \mathrm{~L}$ for all $i \geq 0$, and
2. $|v y| \geq 1$, and
3. $|v x y| \leq \mathrm{p}$.

Why is the PL useful?

- Can use the pumping lemma to show a language L is not context-free
$\Rightarrow 5$ steps for a proof by contradiction:

1. Assume L is a CFL.
2. Let p be the pumping length for L given by the pumping lemma for CFLs.
3. Choose cleverly an s in L of length at least p , such that
4. For all possible ways of decomposing s into $u v x y z$, where $|v y| \geq 1$ and $|v x y| \leq p$,
5. Choose an $i \geq 0$ such that $u v^{i} x y^{i} z$ is not in L.

- Example: Show the following is not a CFL
$\Rightarrow L=\left\{0^{n} 1^{n} 0^{n} \mid n \geq 0\right\}$

Example 2

- Show $L=\left\{0^{\mathrm{n}} \mid \mathrm{n}\right.$ is a prime number $\}$ is not a CFL

1. Assume L is a CFL.
2. Let p be the pumping length for L given by the pumping lemma for CFLs.
3. Let $\mathrm{s}=0^{\mathrm{n}}$ where n is a prime $\geq \mathrm{p}$
4. Consider all possible ways of decomposing s into $u v x y z$, where $|v y| \geq 1$ and $|v x y| \leq \mathrm{p}$.
Then, $v y=0^{\mathrm{r}}$ and $u x z=0^{\mathrm{q}}$ where $\mathrm{r}+\mathrm{q}=\mathrm{n}$ and $\mathrm{r} \geq 1$
5. We need an $i \geq 0$ such that $u \nu^{i} x y^{i} z=0^{i+q}$ is not in L .
($i=0$ won't work because q could be prime: e.g. $2+17=19$)
Choose $i=(\mathrm{q}+2+2 \mathrm{r})$. Then, $i \mathrm{r}+\mathrm{q}=\mathrm{qr}+2 \mathrm{r}+2 \mathrm{r}^{2}+\mathrm{q}=$ $\mathrm{q}(\mathrm{r}+1)+2 \mathrm{r}(\mathrm{r}+1)=(\mathrm{q}+2 \mathrm{r})(\mathrm{r}+1)=$ not prime (since $\mathrm{r} \geq 1)$.
So, $0^{i r+q}$ is not in $L \Rightarrow$ contradicts pumping lemma. L is not a CFL.

Two surprising results about CFLs

- CFLs are not closed under intersection
\Rightarrow Proof: $\mathrm{L}_{1}=\left\{0^{\mathrm{n}} 1^{\mathrm{n}} 0^{\mathrm{m}} \mid \mathrm{n}, \mathrm{m} \geq 0\right\}$ and $\mathrm{L}_{2}=\left\{0^{\mathrm{m}} 1^{\mathrm{n}} 0^{\mathrm{n}} \mid \mathrm{n}, \mathrm{m} \geq 0\right\}$ are both CFLs but $L_{1} \cap L_{2}=\left\{0^{n} 1^{n} 0^{n} \mid n \geq 0\right\}$ is not a CFL.
- CFLs are not closed under complementation
\Rightarrow Proof by contradiction:
Suppose CFLs are closed under complement.
Then, for $\mathrm{L}_{1}, \mathrm{~L}_{2}$ above, $\overline{\mathrm{L}}_{1} \cup \overline{\mathrm{~L}}_{2}$ must be a CFL (since CFLs are closed under \cup-- see this week's homework).
But, $\overline{\overline{\mathrm{L}}}_{1} \cup \overline{\mathrm{~L}}_{2}=\mathrm{L}_{1} \cap \mathrm{~L}_{2}$ (by de Morgan's law).
$\mathrm{L}_{1} \cap \mathrm{~L}_{2}=\left\{0^{\mathrm{n}} 1^{\mathrm{n}} 0^{\mathrm{n}} \mid \mathrm{n} \geq 0\right\}$ is not a CFL \Rightarrow contradiction.
Therefore CFLs are not closed under complementation.

