### What's on our platter today?

- Cliff's notes for equivalence of CFGs and PDAs
  - $\Rightarrow$  L = L(G) for some CFG G  $\Rightarrow$  L = L(M) for some PDA M
  - $\Rightarrow$  L = L(M) for some PDA M  $\Rightarrow$  L = L(G) for some CFG G
- Pumping Lemma (one last time)
  - ⇒ Statement of Pumping Lemma for CFLs
  - ⇒ Application: Showing a given L is not a CFL

R. Rao, CSE 322

### Review: From CFGs to PDAs

- ♦ L is a CFL  $\Rightarrow$  L = L(M) for some PDA M
- Proof Summary:
  - $\Rightarrow$  L is a CFL means L = L(G) for some CFG G = (V,  $\Sigma$ , R, S)
  - $\begin{array}{l} \Leftrightarrow \quad \text{Construct PDA } M = (Q, \, \Sigma, \, \Gamma, \, \delta, \, q_0, \, \{q_{acc}\}) \\ \text{M has only 4 main states (plus a few more for pushing strings)} \\ Q = \{q_0, \, q_1, \, q_2, \, q_{acc}\} \cup E \ \, \text{where E are states used in 2 below} \\ \end{array}$
  - $\Rightarrow$   $\delta$  has 4 components:
  - **1. Init. Stack**:  $\delta(q_0, \varepsilon, \varepsilon) = \{(q_1, \$)\}$  and  $\delta(q_1, \varepsilon, \varepsilon) = \{(q_2, \$)\}$
  - **2. Push & generate strings**:  $\delta(q_2, \varepsilon, A) = \{(q_2, w)\}\$  for  $A \rightarrow w$  in R

2

- **3. Pop & match to input**:  $\delta(q_2, a, a) = \{(q_2, \epsilon)\}$
- **4.** Accept if stack empty:  $\delta(q_2, \varepsilon, \$) = \{(q_{acc}, \varepsilon)\}$
- $\bullet$  Can prove by induction:  $w \in L$  iff  $w \in L(M)$

R. Rao, CSE 322

#### Review: From PDAs to CFGs

- ♦ L = L(M) for some PDA  $M \Rightarrow L = L(G)$  for some CFG G
- ♦ Proof Summary: Simulate M's computation using a CFG
  - ⇒ First, simplify M: 1. Only 1 accept state, 2. M empties stack before accepting, 3. Each transition either Push or Pop, not both or neither. Let  $M = (Q, \Sigma, \Gamma, \delta, q_0, \{q_{acc}\})$
  - $\Rightarrow$  Construct grammar G = (V,  $\Sigma$ , R, S)
  - $\Rightarrow$  Basic Idea: Define variables  $A_{pq}$  for simulating M
  - $\Rightarrow$   $A_{pq}$  generates all strings w such that w takes M from state p with empty stack to state q with empty stack
  - ⇒ Then, A<sub>q0qacc</sub> generates all strings w accepted by M

R. Rao, CSE 322

## Review: From PDAs to CFGs (cont.)

- ♦ L = L(M) for some PDA  $M \Rightarrow L = L(G)$  for some CFG G
- Proof (cont.)
  - $\Rightarrow$  Construct grammar G = (V,  $\Sigma$ , R, S) where

$$\begin{split} &V = \{A_{pq} \mid p, q \in \ Q) \\ &S = A_{q0qacc} \\ &R = \{A_{pq} \rightarrow aA_{rs}b \mid \ p \xrightarrow{a, \epsilon \rightarrow c} r \xrightarrow{A_{rs}} s \xrightarrow{b, c \rightarrow \epsilon} q\} \\ & \cup \{A_{pq} \rightarrow A_{pr}A_{rq} \mid p, q, r \in \ Q\} \\ & \cup \{A_{qq} \rightarrow \epsilon \mid q \in \ Q\} \end{split}$$

- See text for proof by induction:  $w \in L(M)$  iff  $w \in L(G)$
- ♦ Try to get G from M where  $L(M) = \{0^n1^n \mid n \ge 1\}$

R. Rao, CSE 322 4

# Pumping Lemma for CFLs



- ♦ Intuition: If L is CF, then some CFG G produces strings in L
  - ⇒ If some string in L is very long, it will have a very tall parse tree
  - ⇒ If a parse tree is taller than the number of distinct variables in G, then some variable A repeats ⇒ A will have at least two sub-trees
  - ❖ We can pump up the original string by replacing A's smaller subtree with larger, and pump down by replacing larger with smaller
- ♦ Pumping Lemma for CFLs in all its glory:
  - ⇒ If L is a CFL, then there is a number p (the "pumping length") such that for all strings s in L such that  $|s| \ge p$ , there exist u, v, x, y, and z such that s = uvxyz and:
  - 1.  $uv^i x y^i z \in L$  for all  $i \ge 0$ , and
  - 2.  $|vy| \ge 1$ , and
  - 3.  $|vxy| \le p$ .

R. Rao, CSE 322

# Why is the PL useful?



Yawn...yes, why indeed?

- Can use the pumping lemma to show a language L is not context-free
  - $\Rightarrow$  5 steps for a proof by contradiction:
  - 1. Assume L is a CFL.
  - 2. Let p be the pumping length for L given by the pumping lemma for CFLs.
  - 3. Choose cleverly an s in L of length at least p, such that
  - 4. For all possible ways of decomposing s into uvxyz, where  $|vy| \ge 1$  and  $|vxy| \le p$ ,
  - 5. Choose an  $i \ge 0$  such that  $uv^i x y^i z$  is not in L.
- ◆ Example: Show the following is not a CFL
  - $L = \{0^n 1^n 0^n \mid n \ge 0\}$

R. Rao, CSE 322

## Example 2



- Show  $L = \{0^n \mid n \text{ is a prime number}\}\$ is not a CFL
  - 1. Assume L is a CFL.
  - 2. Let p be the pumping length for L given by the pumping lemma for CFLs.
  - 3. Let  $s = 0^n$  where n is a prime  $\geq p$
  - 4. Consider *all possible ways* of decomposing *s* into *uvxyz*, where  $|vy| \ge 1$  and  $|vxy| \le p$ .

Then,  $vy = 0^r$  and  $uxz = 0^q$  where r + q = n and  $r \ge 1$ 

5. We need an  $i \ge 0$  such that  $uv^i x y^i z = 0^{ir+q}$  is not in L. (i = 0 won't work because q could be prime: e.g. 2 + 17 = 19) Choose i = (q + 2 + 2r). Then,  $ir + q = qr + 2r + 2r^2 + q = q(r+1) + 2r(r+1) = (q+2r)(r+1) = \text{not prime (since } r \ge 1)$ .

So,  $0^{ir+q}$  is not in L  $\Rightarrow$  contradicts pumping lemma. L is not a CFL.

R. Rao, CSE 322

## Two surprising results about CFLs



- ◆ CFLs are not closed under intersection
  - ⇒ **Proof**:  $L_1 = \{0^n 1^n 0^m \mid n, m \ge 0\}$  and  $L_2 = \{0^m 1^n 0^n \mid n, m \ge 0\}$  are both CFLs but  $L_1 \cap L_2 = \{0^n 1^n 0^n \mid n \ge 0\}$  is not a CFL.
- ◆ CFLs are <u>not closed</u> under complementation
  - **Proof by contradiction:**

Suppose CFLs are closed under complement.

Then, for  $L_1, L_2$  above,  $\overline{\overline{L}_1 \cup \overline{L}}_2$  must be a CFL (since CFLs are closed under  $\cup$  -- see this week's homework).

But,  $\overline{\overline{L}_1 \cup \overline{L}}_2 = L_1 \cap L_2$  (by de Morgan's law).

 $L_1 \cap L_2 = \{0^n 1^n 0^n \mid n \ge 0\}$  is not a CFL  $\Rightarrow$  contradiction.

Therefore CFLs are not closed under complementation.

R. Rao, CSE 322