Beyond the Regular world...

Are there languages that are not regular?

- Idea: If a language violates a property obeyed by all regular languages, it cannot be regular!
\Rightarrow Pumping Lemma for showing non-regularity of languages

The Pumping Lemma for Regular Languages

- What is it?
\Rightarrow A statement ("lemma") that is true for all regular languages
- Why is it useful?
\Rightarrow Can be used to show that certain languages are not regular
\Rightarrow How? By contradiction: Assume the given language is regular and show that it does not satisfy the pumping lemma
- What is the idea behind it?
\Rightarrow Any regular language L has a DFA M that recognizes it
\Rightarrow If M has \mathbf{p} states and accepts a string of length \geq p , the sequence of states M goes through must contain a cycle (repetition of a state) due to the pigeonhole principle! Thus:
\Rightarrow All strings that make M go through this cycle 0 or any number of times are also accepted by M and should be in L.

Formal Statement of the Pumping Lemma

- Pumping Lemma: If L is regular, then $\exists \mathrm{p}$ such that $\forall s$ in L with $|s| \geq \mathrm{p}, \exists x, y, z$ with $s=x y z$ and:

1. $x y^{i} z \in \mathrm{~L} \forall i \geq 0$, and
2. $|y| \geq 1$, and
3. $|x y| \leq \mathrm{p}$.

- Proof on board...(see also page 79 in textbook)
- Proved in 1961 by Bar-Hillel, Peries and Shamir

Pumping Lemma in Plain English

* Let L be a regular language and let $\mathrm{p}=$ "pumping length" $=$ no. of states of a DFA accepting L
- Then, any string s in L of length $\geq \mathrm{p}$ can be expressed as $s=$ $x y z$ where:
$\Rightarrow y$ is not empty (y is the cycle)
$\Rightarrow|x y| \leq p$ (cycle occurs within p state transitions), and
\Rightarrow any "pumped" string $x y^{i} z$ is also in L for all $i \geq 0$ (go through the cycle 0 or more times)

- In-Class Examples: Using the pumping lemma to show a language L is not regular
$\Rightarrow 5$ steps for a proof by contradiction:

1. Assume L is regular.
2. Let p be the pumping length given by the pumping lemma.
3. Choose cleverly an s in L of length at least p , such that
4. For all ways of decomposing s into $x y z$, where $|x y| \leq \mathrm{p}$ and y is not null,
5. There is an $i \geq 0$ such that $x y^{i} z$ is not in L.

Proving Non-Regularity using the Pumping Lemma

- Examples: Show the following are not regular $\Rightarrow L_{1}=\left\{0^{\mathrm{n}} 1^{\mathrm{n}} \mid \mathrm{n} \geq 0\right\}$ over the alphabet $\{0,1\}$
$\Rightarrow L_{2}=\{w \mid w$ contains equal number of 0 s and 1 s$\}$ over the alphabet $\{0,1\}$
- Try these at home:
$\Rightarrow L_{3}=\left\{0^{n} 1^{m} \mid n>m\right\}$ over the alphabet $\{0,1\}$
$\Rightarrow A D D=\{x=y+z \mid x, y, z$ are binary numbers and x is the sum of y and $z\}$ over the alphabet $\{0,1,=,+\}$
\Rightarrow PRIMES $=\left\{0^{\mathrm{p}} \mid \mathrm{p}\right.$ is prime $\}$ over the alphabet $\{0\}$

