CSE 322: Regular Expressions and Finite Automata

- Definition of a Regular Expression
$\square \mathrm{R}$ is a regular expression iff
R is a string over $\Sigma \cup\left\{\varepsilon, \varnothing,(),, \cup,^{*}\right\}$ and R is:

1. Some symbol $a \in \Sigma$, or
2. ε, 아
3. \varnothing, or
4. ($R_{1} \cup R_{2}$) where R_{1} and R_{2} are regular exps., or
5. $R_{1} R_{2}=R_{1}{ }^{\circ} R_{2}$ where R_{1} and R_{2} are reg. exps., or
6. $\mathrm{R}_{1}{ }^{*}$ where R_{1} is a regular expression.

- Precedence: Evaluate * first, then ${ }^{\circ}$, then \cup
\triangleright E.g. $0 \cup 11^{*}=0 \cup\left(1^{\circ}\left(1^{*}\right)\right)=\{0\} \cup\{1,11,111, \ldots\}$

Examples

\checkmark What is R for each of the following languages?

1. $\mathrm{L}(\mathrm{R})=\{\mathrm{w} \mid \mathrm{w}$ contains exactly two 0 's $\}$
2. $L(R)=\{w \mid w$ contains at least two 0 's $\}$
3. $L(R)=\{w \mid w$ contains an even number of 0 's $\}$
4. $L(R)=\{w \mid w$ does not contain 00$\}$
5. $L(R)=\{w \mid w$ is a valid identifier in $C\}$ (or in Java)
6. $L(R)=\{w \mid w$ is a word heard on the MTV show "The Osbournes"\}

Regular Expressions and Finite Automata

\checkmark What is the relationship between regular expressions and DFAs/NFAs?

- Specifically:

1. $\mathbf{R} \rightarrow$ NFA? Given a reg. exp. R, can we create an NFA N such that $\mathrm{L}(\mathrm{R})=\mathrm{L}(\mathrm{N})$?
2. NFA \rightarrow R? Given an NFA N (or its equivalent DFA M), can we come up with a reg. \exp. R such that $L(M)=L(R)$?

From Regular Expressions to NFAs

- Problem: Given any regular expression R, how do we construct an NFA N such that $\mathrm{L}(\mathrm{N})=\mathrm{L}(\mathrm{R})$?
- Soln.: Use the multi-part definition of regular expressions!!
\Longleftrightarrow Show how to construct an NFA for each possible case in the definition: $\mathrm{R}=a$, or $\mathrm{R}=\varepsilon$, or $\mathrm{R}=\varnothing$, or $\mathrm{R}=(\mathrm{R} 1 \cup \mathrm{R} 2)$, or $\mathrm{R}=\mathrm{R} 1^{\circ} \mathrm{R} 2$, or $\mathrm{R}=\mathrm{R} 1^{*}$.

- Example: Draw NFA for $10 \Sigma^{*} 01$

From NFAs/DFAs to Regular Expressions

- Problem: Given any NFA (or DFA) N, how do we construct a regular expression R such that $\mathrm{L}(\mathrm{N})=\mathrm{L}(\mathrm{R})$?
- Solution:
\square Idea: Collapse 2 or more edges in N labeled with single symbols to a new edge labeled with an equivalent regular expression
\square This results in a "generalized" NFA (GNFA)
\Rightarrow Our goal: Get a GNFA with 2 states (start and accept) connected by a single edge labeled with the required regular expression R

From NFAs/DFAs to Regular Expressions

- Steps for extracting regular expressions from NFAs/DFAs:

1. Add new start state connected to old one via an ε-transition
2. Add new accept state receiving ε-transitions from all old ones
3. Keep applying 2 rules until only start and accept states remain:
4. Collapse Parallel Edges:

5. Remove "loopy" states:

Note: Also applies when $\mathrm{q} 1=\mathrm{q} 2$

