CSE 322
 Winter Quarter 2003
 Assignment 9
 Due Friday, March 14, 2003

All solutions should be neatly written or type set. All major steps in proofs and algorithms must be justified.

1. (10 points) Design a Turing machine the copies a string. The machine starts with a string $x \in\{0,1\}^{*}$ on the tape with the head on the first symbol of x. When the Turing machine halts the string $x c x$ is written on the tape with the head on the first symbol of the output. You may use a state diagram as your design, but explain what the various states mean.
2. (10 points) Given a Turing machine $M=\left(Q, \Sigma, \Gamma, \delta, q_{0}, B, F\right)$ that halts on every input, design a Turing machine M^{\prime} that also halts on every input and $L\left(M^{\prime}\right)=\Sigma^{*}-L(M)$. Recall that final states q have the property that $\delta(q, a)$ is undefined for all $a \in \Gamma$. Thus, it does not suffice to make all the non-final states final.
3. (10 points) Let $G=(V, \Sigma, P, S)$ be a context-free grammar. Using a closure algorithm we know how to compute the productive non-terminals, those non-terminals that generate a terminal string. Assume we have an algorithm for computing the positive productive non-terminals, that is, all non-terminals A such that $A \Rightarrow^{*} x$ for some $x \in \Sigma^{+}$. For $A \in V$, define the relation $R(A, B)$ if $A \Rightarrow^{*} x B y$ for some $x y \in \Sigma^{*}$ and $R^{+}(A, B)$ if $A \Rightarrow^{*} x B y$ for some $x y \in \Sigma^{+}$.
(a) Design a closure algorithm to compute $R(A, B)$ for all $A, B \in V$. You may use the algorithm for computing Prod, the productive non-terminals of G as a subroutine.
(b) Design a closure algorithm to compute $R^{+}(A, B)$ for all $A, B \in V$. You may use the algorithm for computing the relation R, the algorithm for computing Prod, and the algorithm for computing Prod^{+} (the set of positive productive non-terminals) as subroutines in your algorithm.
(c) Using R, R^{+}, and Prod as subroutines design an algorithm for determining if the language generated by G is infinite. Note that $L(G)$ is infinite if and only if there are terminal strings u, v, x, y, z and a non-terminal A such that $S \Rightarrow^{*} u A z, A \Rightarrow^{*} v A y$ with $v y \neq \epsilon$, and $A \Rightarrow^{*} x$.
