CSE 322 Winter Quarter 2003 Assignment 2 Due Friday, January 17

All solutions should be neatly written or type set. All major steps in proofs and algorithms must be justified.

- 1. (10 points) Design deterministic finite automata using a state transition diagram for each of the following languages.
 - (a) $\{x \in \{0,1\}^* : 010 \text{ is a substring of } x\}.$
 - (b) $\{x \in \{0, 1\}^* : 111 \text{ is not a substring of } x\}.$
 - (c) $\{x \in \{0, 1\}^* : x \text{ contains exactly 5 } 0's\}.$
 - (d) $\{x \in \{0,1\}^* : x \text{ has an even number of } 0's \text{ or an odd number of } 1's\}.$
- 2. (10 points) Consider the languages

$$L_k = \{x \in \{0,1\}^* : x \text{ contains exactly } k \ 0's\}$$

for $k \geq 0$.

- (a) Formally define a deterministic finite automaton M_k with exactly k + 2 states that accepts L_k .
- (b) Prove by contradiction that every deterministic finite automaton that accepts L_k has at least k + 2 states. The ideas from problem 2 of assignment 1 are useful.
- 3. (10 points) A finite state transducer $M = (Q, \Sigma, \Gamma, \delta, q_0)$ is defined by: Q is a finite set of states, Σ and Γ are alphabets and $\delta : Q \times \Sigma \to Q \times \Gamma^*$. That is, $\delta(q, \sigma) = (p, y)$ means that on input q processing $\sigma \in \Sigma$, M goes to state p and outputs the string y. Let $w = w_1 w_2 \cdots w_n$ where $w_i \in \Sigma$. We write $q \xrightarrow{w,y} p$ if there are states r_0, \ldots, r_n and $y_1, \ldots, y_n \in \Gamma^*$ such that:

$$y = y_1 y_2 \cdots y_n,$$

$$r_0 = q,$$

$$r_n = p,$$

$$(r_i, y_i) = \delta(r_{i-1}, w_i), \ 1 \le i \le n$$

For $x \in \Sigma^*$, define $f_M(x) = y$ if $q_0 \xrightarrow{x,y} p$ for some $p \in Q$. The string $f_M(x)$ is called the output of M on input x.

Design a finite state transducer that outputs the quotient in binary of a number written in binary divided by 3. For example, the quotient of 11 divided by 3 is 01 because 11 is 3 written in binary. Another example is the quotient of 1101 divided by 3 is 0100 because 1101 is 13 written binary and 0100 is 4 written in binary.