Normal Forms for Context-Free Grammars
CSE 322: Introduction to Formal Models in Computer Science
February 11, 2002

1. Putting a Context-Free Grammar in Normal Form

Definition: A context-free grammar $G = (V, \Sigma, R, S)$ is in normal form if and only if R contains no rules of the form

1. $A \to \varepsilon$, for any $A \in V$, or
2. $A \to B$, for any $A, B \in V$.

Here is a procedure for converting a grammar G into a grammar G' such that G' is in normal form, and $L(G') = L(G) - \{\varepsilon\}$. Throughout the procedure, A and B are arbitrary elements of V, and u and v are arbitrary strings in $(V \cup \Sigma)^*$.

1. (a) For every pair of rules $A \to \varepsilon$ and $B \to uAv$, add a new rule $B \to uv$. Continue doing this until no new rule can be added by this procedure.
 (b) Remove all rules $A \to \varepsilon$. ¹

2. (a) For every pair of rules $A \to B$ and $B \to u$, add a new rule $A \to u$. Continue doing this until no new rule can be added by this procedure.
 (b) Remove all rules $A \to B$.

2. Example

Put $G = (V, \Sigma, R, S)$ in normal form, where

\[
V = \{S, A, B\},
\]

\[
\Sigma = \{a, b\}, \text{ and}
\]

\[
R = \{S \to A, A \to SB, A \to B, B \to aAbB, B \to \varepsilon\}.
\]

(Since $\varepsilon \in L(G)$, the resulting normal form grammar will generate $L(G) - \{\varepsilon\}$.)

1. (a) Add $A \to S$, $A \to \varepsilon$, $B \to aAb$.
 Add $S \to \varepsilon$, $B \to abB$, $B \to ab$.

¹If $S \to \varepsilon$ is removed in this step, then $L(G) - L(G') = \{\varepsilon\}$; otherwise, $L(G) = L(G')$.

1
(b) Remove $A \to \varepsilon$, $B \to \varepsilon$, $S \to \varepsilon$.

At this point, the set of rules is

$$\{S \to A, \\
A \to SB, A \to S, A \to B, \\
B \to aAbB, B \to aAb, B \to abB, B \to ab\}.$$

2. (a) Add $S \to SB$, $S \to S$, $S \to B$, $A \to A$, $A \to aAbB$, $A \to aAb$, $A \to abB$, $A \to ab$.

Add $S \to aAbB$, $S \to aAb$, $S \to abB$, $S \to ab$.

(b) Remove $S \to S$, $S \to A$, $S \to B$, $A \to S$, $A \to A$, $A \to B$.

The final set of rules is

$$\{S \to SB, S \to aAbB, S \to aAb, S \to abB, S \to ab, \\
A \to SB, A \to aAbB, A \to aAb, A \to abB, A \to ab, \\
B \to aAbB, B \to aAb, B \to abB, B \to ab\}.$$

As an example of how the equivalence works, consider the following derivation in the original grammar G: $S \Rightarrow A \Rightarrow B \Rightarrow aAbB \Rightarrow aSbbB \Rightarrow aABbb \Rightarrow aAbBBbb \Rightarrow aBbBBbB \Rightarrow aabBbBbB \Rightarrow aabBbBbB.$

This is simulated in the normal form grammar by the following derivation of the same terminal string: $S \Rightarrow aAbB \Rightarrow aSbBb \Rightarrow aabBbB \Rightarrow aabBbB \Rightarrow aabBbB \Rightarrow aabBbB.$

3. **Putting a Context-Free Grammar in Chomsky Normal Form**

Definition: A context-free grammar $G = (V, \Sigma, R, S)$ is in *Chomsky normal form* if and only if every rule in R is of one of the following forms:

1. $A \to a$, for $A \in V$ and $a \in \Sigma$, or

2. $A \to BC$, for $A, B, C \in V$.

Here is a procedure for putting a normal form grammar in Chomsky normal form, without changing the language generated by the grammar. Throughout the procedure, A and B_1, B_2, \ldots, B_m are variables, and $X_1, X_2, \ldots X_m$ are arbitrary elements in $V \cup \Sigma$.

1. For each terminal symbol a, add a new variable C_a and a new rule $C_a \to a$.

2. Let $A \to X_1X_2 \cdots X_m$ be a rule, with $m \geq 2$. For each $1 \leq i \leq m$, if X_i is a terminal symbol a, replace X_i in the right hand side of the original rule by C_a.

3. Let $A \to B_1B_2 \cdots B_m$ be a rule, with $m \geq 3$. Add new variables $D_1, D_2, \ldots, D_{m-2}$, and replace the rule $A \to B_1B_2 \cdots B_m$ by the rules

$$A \to B_1D_1, \ D_1 \to B_2D_2, \ldots, D_{m-3} \to B_{m-2}D_{m-2}, \ D_{m-2} \to B_{m-1}B_m.$$
4. Example

Put $G = (V, \Sigma, R, S)$ in Chomsky normal form, where

\[
\begin{align*}
V &= \{S, A\}, \\
\Sigma &= \{a, b\}, \text{ and} \\
R &= \{S \to aAb, A \to aAbS, A \to b\}.
\end{align*}
\]

Notice that G is already in normal form.

The result of steps 1 and 2 is $G' = (V', \Sigma', R', S)$, where

\[
\begin{align*}
V' &= \{S, A, C_a, C_b\}, \\
\Sigma &= \{a, b\}, \text{ and} \\
R' &= \{S \to C_aAC_b, A \to C_aAC_bS, A \to b, C_a \to a, C_b \to b\}.
\end{align*}
\]

The result of step 3 is $G'' = (V'', \Sigma'', R'', S)$, where

\[
\begin{align*}
V'' &= \{S, A, C_a, C_b, D_1, E_1, E_2\}, \\
\Sigma &= \{a, b\}, \text{ and} \\
R'' &= \{S \to C_aD_1, D_1 \to AC_b, A \to C_aE_1, E_1 \to AE_2, E_2 \to C_bS, A \to b, C_a \to a, C_b \to b\}.
\end{align*}
\]

G'' is in Chomsky normal form.