
University of Washington 
CSE 322: Introduction to Formal Models in Computer Science

Homework #7
Due: Wednesday, June 5, 2002, 10:30am

Spring 2002 May 31, 2002

Written homework is due at the beginning of class on the day specified. Any
homework turned in after the deadline will be considered late. Late homework policy:
You may turn in your homework after the deadline and before 5pm on the day it was due,
but at a cost of a 20% penalty. No homework will be accepted after 5pm on the due
date.

Please staple all of your pages together (and order them according to the order of
the problems below) and have your name on each page, just in case the pages get
separated. Write legibly (or type) and organize your answers in a way that is easy to
read. Neatness counts!

For each problem, make sure you have acknowledged all persons with whom you
worked. Even though you are encouraged to work together on problems, the work you
turn in is expected to be your own. When in doubt, invoke the Gilligan’s Island rule (see
the course organization handout) or ask the instructor.

* * *
Regular problems (to be turned in) :
1. Prove that the language L = { 0n | n is prime } is not context-free by using the

pumping lemma for context-free languages.
2. Sipser, Problem 3.8a. Either a state diagram or a sufficiently detailed description of

the machine (like those in the examples in the text) is good enough.

* * *
Bonus Problem (optional):
1. Describe how to construct a Turing machine that recognizes the language L from

Problem #1 of the Regular problems. Use as much detail as necessary so that
someone who knows how a Turing machine works could work out the details of the
actual machine, but not so much detail that you end up programming every state and
transition.

* * *
Suggested problems (highly recommended, but not to be turned in) :
1. Sipser, Exercise 3.1, 3.2, 3.5.
2. 3.7.
3. 3.8b, c.
4. Variation of Regular Problem #2. Suppose the language were { w | w contains an

equal number of 0s, 1s, and 2s } and construct a Turing machine that recognizes it.
5. Construct a Turing machine that, when presented with the input 01n on the tape (for

any n ≥ 0) and head on the leftmost tape symbol, halts in the accept state with 012n on
the tape and the head on the leftmost tape symbol. (In other words, it “computes” 2n ,



given n. Thought question: Why is it convenient to have the 0 as part of the input and
output?)

6. Describe how a PDA with two stacks (not just one) could be used to simulate a
Turing machine.

7. On page 125 of Sipser, it says:

“We now turn to a much more powerful model, first proposed by Alan Turing in
1936, called the Turing machine. Similar to a finite automaton but with an unlimited
and unrestricted memory, a Turing machine is a much more accurate model of a
general purpose computer. A Turing machine can do everything that a real computer
can do.”

Let us consider these statements. Every computer ever built (and indeed any
computer that will ever be built) has a finite amount of memory. Yes, it may be a
large amount of memory, but it is still finite. So, in fact, for any computer that has or
will ever exist, there is a finite automaton that exactly models its behavior. (For
example, if a PC has 1,000,000 bits of memory, then it can be in one of 21,000,000

states, which could all be states in a very large DFA.) So why does Sipser say that
Turing machines are a much more accurate model of a general purpose computer?
Indeed, why should we even bother to study pushdown automata or Turing machines
when finite automata are powerful enough to model any real computer?


