
University of Washington
CSE 322: Introduction to Formal Models in Computer Science

Homework #3
Due: Friday, April 26, 2002, 10:30am

Spring 2002 April 17, 2002

Written homework is due at the beginning of class on the day specified. Any
homework turned in after the deadline will be considered late. Late homework policy:
You may turn in your homework after the deadline and before 5pm on the day it was due,
but at a cost of a 20% penalty. No homework will be accepted after 5pm on the due
date.

Please staple all of your pages together (and order them according to the order of
the problems below) and have your name on each page, just in case the pages get
separated. Write legibly (or type) and organize your answers in a way that is easy to
read. Neatness counts!

For each problem, make sure you have acknowledged all persons with whom you
worked. Even though you are encouraged to work together on problems, the work you
turn in is expected to be your own. When in doubt, invoke the Gilligan’s Island rule (see
the course organization handout) or ask the instructor.

* * *
Regular problems (to be turned in) :
1. Here is a DFA that accepts L = { w ∈ {0, 1}* | the 8th symbol from the right end of

the string w is a 1}.

M = (Q, {0,1}, δ, s, F) where:

Q = {qw | w ∈ {0, 1}* and |w| = 8},
s = q00000000,
F = { qw | w = 1x , where |x| = 7},
δ(qa1 a2 a3 a4 a5 a6 a7 a8, a) = qa2 a3 a4 a5 a6 a7 a8 a , where a ∈ {0, 1} and ai ∈ {0, 1},
for all 1 ≤ i ≤ 8.

Each state is represented by a string of length 8, which keeps track of what the last 8
symbols the DFA has consumed. (Note that this DFA is defined slightly differently
than in the solution set to Homework #2, but it accepts the same language.)

Prove that L(M) = L. To do this, you need to prove by induction on the length of the
string w that (s, w) | *

M (qy, ε), where y is the last eight symbols of w, or if |w| < 8,
then y = 0kw, where k = 8 - |w|.

2. Consider the languages mentioned in Exercise 1.4, parts b, e, and i (page 84 in
Sipser). For each language, give a regular expression that represents that language.
Note that for part b, the 1s can be anywhere in the string. For part i, remember that

we index strings starting at 1, so that a string w = w1 w2 w3 … wn, where wi ∈ {0, 1}
for 1 ≤ i ≤ n.

You may use any of the short cuts we have mentioned in class or that the book uses to
refer to regular expressions, but please be sure you know what the actual regular
expression is, according to the formal definition given in class and in the book.

3. Consider the following regular expression over the alphabet {0, 1}.

(((ε ∪ 0) 01 ∪ 1*) 0)*

Use the procedure described in Lemma 1.29 to convert it into a state diagram of an
NFA that accepts the language that the regular expression represents. Do not skip
steps or simplify your automaton. In other words, everyone who follows the
procedure correctly should come up with exactly the same state diagram. If you are
worried that you did one of the steps incorrectly, show one or more intermediate steps
in the procedure.

4. Exercise 1.16(b). Do not skip steps or simplify your regular expression.

5. If w is a string, we define wR to be the reverse of the string. That is, if w = w1 w2 …
wn-1 wn , then wR = wn wn-1 … w2 w1 . Suppose L is a language. We define LR = { wR |
w ∈ L}.

Now suppose r is a regular expression such that L(r) = L. Define a function f that
takes a regular expression r and produces a regular expression such that L(f(r)) = LR.
Briefly justify why your procedure works. (Hint: you want to take advantage of the
fact that regular expressions are defined inductively, much as the proof of Lemma
1.29 does.)

Note: This shows that regular languages are closed under the reverse operation.
* * *

Bonus Problem (optional):
1. A regular expression is in disjunctive normal form if it is of the form (r1 ∪ r2 ∪ … ∪

rn) for some n ≥ 1, where none of the ri contains an occurrence of ∪ . Show that every
regular language is represented by some regular expression in disjunctive normal
form. Hint: {a, b}* = {a}* • ({b} • {a}*)* , where • is the concatenation operation.
Be sure your construction works if the alphabet Σ has more than two symbols in it.

* * *
Suggested problems (highly recommended, but not to be turned in) :
1. Come up with regular expressions that represent the other languages in Exercise 1.4

in Sipser. Note that although such regular expressions must exist, it is not easy to
come up with them. For example, part f and part h seem particularly difficult without
resorting to the procedure in Lemma 1.32.

2. Exercise 1.14. More practice with converting regular expressions to NFAs.
3. Exercise 1.16a. Good warmup problem.

