Spring 2002
Handout 3
April 12, 2002

There is nothing obvious about the construction in the proof of Theorem 1.19, so the statement near the end of the proof that "the construction of M obviously works correctly" is obviously incorrect. Here is a proof.

Let $A=\left(Q, \Sigma, \delta, q_{0}, F\right)$ be any finite automaton (either deterministic or nondeterministic), $p, q \in Q$, and $x, y \in \Sigma^{*}$. The notation $(p, x y) \vdash_{A}^{*}(q, y)$ means that, if you start A in state p with input $x y$, then in zero or more transitions A can get to state q with input y remaining unread (that is, A can get to state q after consuming just the prefix x). The notation \vdash_{A} without the $*$ is analogous, but is used to indicate that the move from p to q happens after exactly one transition rather than in zero or more transitions.

Lemma $1\left(q_{0}, w\right) \vdash_{N}^{*}(r, \varepsilon)$ iff $\left(q_{0}^{\prime}, w\right) \vdash_{M}^{*}(R, \varepsilon)$ and $r \in R$.

Proof: The proof is by induction on $|w|$.
BASIS ($w=\varepsilon$):

$$
\begin{array}{rlr}
\left(q_{0}, \varepsilon\right) \vdash_{N}^{*}(r, \varepsilon) & \text { iff } r \in E\left(\left\{q_{0}\right\}\right) & (\text { defn of } E) \\
& \text { iff } q_{0}^{\prime}=R \text { and } r \in R & \text { (defn of } \left.q_{0}^{\prime}\right) \\
\text { iff }\left(q_{0}^{\prime}, \varepsilon\right) \vdash_{M}^{*}(R, \varepsilon) \text { and } r \in R & \text { (no } \varepsilon \text { transitions) }
\end{array}
$$

Induction $(w=x a, a \in \Sigma)$:

$$
\begin{aligned}
& \left(q_{0}, x a\right) \vdash_{N}^{*}(r, \varepsilon) \\
& \text { iff } \quad(\exists s, t)\left(q_{0}, x a\right) \vdash_{N}^{*}(s, a) \text { and }(s, a) \vdash_{N}(t, \varepsilon) \text { and }(t, \varepsilon) \vdash_{N}^{*}(r, \varepsilon) \\
& \text { iff } \quad(\exists s, t) \quad\left(q_{0}, x\right) \vdash_{N}^{*}(s, \varepsilon) \text { and } t \in \delta(s, a) \text { and } r \in E(\{t\}) \quad(\text { Fact } 2, \text { defn of } E)
\end{aligned}
$$

iff $(\exists s, t)\left(q_{0}^{\prime}, x\right) \vdash_{M}^{*}(S, \varepsilon)$ and $s \in S$ and $t \in \delta(s, a)$ and $r \in E(\{t\})$ (Ind Hyp)
iff $\quad\left(q_{0}^{\prime}, x\right) \vdash_{M}^{*}(S, \varepsilon)$ and $r \in \bigcup_{s \in S} E(\delta(s, a))$
iff $\quad\left(q_{0}^{\prime}, x\right) \vdash_{M}^{*}(S, \varepsilon)$ and $r \in \delta^{\prime}(S, a)$
iff $\quad\left(q_{0}^{\prime}, x a\right) \vdash_{M}^{*}(S, a)$ and $\delta^{\prime}(S, a)=R$ and $r \in R$
iff $\quad\left(q_{0}^{\prime}, x a\right) \vdash_{M}^{*}(S, a)$ and $(S, a) \vdash_{M}(R, \varepsilon)$ and $r \in R$
iff $\quad\left(q_{0}^{\prime}, x a\right) \vdash_{M}^{*}(R, \varepsilon)$ and $r \in R$

Now we can use this lemma to prove the correctness of the construction in Theorem 1.19.

Theorem $2 L(M)=L(N)$.

Proof:

$$
\begin{array}{llr}
w \in L(M) & \text { iff } \quad\left(q_{0}^{\prime}, w\right) \vdash_{M}^{*}(R, \varepsilon) \text { and } R \in F^{\prime} \quad & (\operatorname{defn} \text { of } L(M)) \\
& \text { iff }\left(q_{0}^{\prime}, w\right) \vdash_{M}^{*}(R, \varepsilon) \text { and } R \cap F \neq \emptyset & \left(\operatorname{defn} \text { of } F^{\prime}\right) \\
& \text { iff }(\exists r)\left(q_{0}^{\prime}, w\right) \vdash_{M}^{*}(R, \varepsilon) \text { and } r \in R \text { and } r \in F & \\
& \text { iff }(\exists r)\left(q_{0}, w\right) \vdash_{N}^{*}(r, \varepsilon) \text { and } r \in F & \\
& \text { iff } w \in L(N) & (\operatorname{demma} 1)
\end{array}
$$

