It is intuitively clear that the machine presented in the proof of Theorem 1.12 recognizes the language $A_{1} \cup A_{2}$. Informally speaking, the first component of the state in the machine M changes just as though machine M_{1} were running independently of M_{2}. The second component of the state in the machine M changes just as though machine M_{2} were running independently of M_{1}. M accepts w if either machine ends up in a final (accept) state.

Here is a proof that formalizes this intuition.

Lemma $1 L(M)=A_{1} \cup A_{2}$.

Proof:

$$
\begin{align*}
& w \in L(M) \quad \text { iff }\left(\left(q_{1}, q_{2}\right), w\right) \vdash_{M}^{*}\left(\left(f_{1}, f_{2}\right), \varepsilon\right), \text { where } f_{1} \in F_{1} \text { or } f_{2} \in F_{2} . \tag{1}\\
& \text { iff }\left(q_{1}, w\right) \vdash_{M_{1}}^{*}\left(f_{1}, \varepsilon\right) \text { and } \\
&\left(q_{2}, w\right) \vdash_{M_{2}}^{*}\left(f_{2}, \varepsilon\right), \text { where } f_{1} \in F_{1} \text { or } f_{2} \in F_{2} . \tag{2}\\
& \text { iff } w \in L\left(M_{1}\right) \text { or } w \in L\left(M_{2}\right) \\
& \text { iff } w \in L\left(M_{1}\right) \cup L\left(M_{2}\right)
\end{align*}
$$

Technically speaking, in order to get from line (1) to line (2) above, we would have to prove by induction on the length of the string w that for any states $s_{1}, p_{1} \in Q_{1}, s_{2}, p_{2} \in Q_{2}$, and any string $w,\left(\left(s_{1}, s_{2}\right), w\right) \vdash_{M}^{*}\left(\left(p_{1}, p_{2}\right), \varepsilon\right)$ iff $\left(s_{1}, w\right) \vdash_{M}^{*}\left(s_{1}, \varepsilon\right)$ and $\left(s_{2}, w\right) \vdash^{*}\left(p_{2}, \varepsilon\right)$. (Do you see why we can't conclude (2) from (1) directly?)

Claim: For any states $s_{1}, p_{1} \in Q_{1}, s_{2}, p_{2} \in Q_{2}$, and any string $w,\left(\left(s_{1}, s_{2}\right), w\right) \vdash_{M}^{*}$ $\left(\left(p_{1}, p_{2}\right), \varepsilon\right)$ iff $\left(s_{1}, w\right) \vdash_{M}^{*}\left(p_{1}, \varepsilon\right)$ and $\left(s_{2}, w\right) \vdash_{M}^{*}\left(p_{2}, \varepsilon\right)$.

Proof: The proof is by induction on $|w|$.
Basis: Left as an exercise.
Induction Hypothesis: Suppose the Claim is true for all strings z such that $0 \leq|z| \leq n$, for some fixed $n \geq 0$.

Induction Step: Let w be a string where $|w|=n+1$ and $w=w^{\prime} a$ for some $a \in \Sigma$.

There are two implications to prove.
(\Rightarrow) Suppose $\left(\left(s_{1}, s_{2}\right), w^{\prime} a\right) \vdash_{M}^{*}\left(\left(p_{1}, p_{2}\right), \varepsilon\right)$.
Then $\left(\left(s_{1}, s_{2}\right), w^{\prime} a\right) \vdash_{M}^{*}\left(\left(r_{1}, r_{2}\right), a\right) \vdash_{M}\left(\left(p_{1}, p_{2}\right), \varepsilon\right)$, where $r_{1} \in Q_{1}, r_{2} \in Q_{2}, \delta_{1}\left(r_{1}, a\right)=p_{1}$, and $\delta_{2}\left(r_{2}, a\right)=p_{2}$.

By Fact $1,\left(\left(s_{1}, s_{2}\right), w^{\prime}\right) \vdash_{M}^{*}\left(\left(r_{1}, r_{2}\right), \varepsilon\right)$.
By the induction hypothesis, $\left(s_{1}, w^{\prime}\right) \vdash_{M_{1}}^{*}\left(r_{1}, \varepsilon\right)$ and $\left(s_{2}, w^{\prime}\right) \vdash_{M_{2}}^{*}\left(r_{2}, \varepsilon\right)$.
So,

$$
\begin{array}{rll}
\left(s_{1}, w^{\prime} a\right) & \vdash_{M_{1}}^{*} & \left(r_{1}, a\right) \tag{Fact1}\\
& \vdash_{M_{1}} & \left(p_{1}, \varepsilon\right)
\end{array}
$$

$$
\left(\delta_{1}\left(r_{1}, a\right)=p_{1}\right)
$$

and

$$
\begin{array}{rll}
\left(s_{2}, w^{\prime} a\right) & \vdash_{M_{2}}^{*} & \left(r_{2}, a\right) \\
& \vdash_{M_{2}} & \left(p_{2}, \varepsilon\right)
\end{array}
$$

(Fact 1)
$\left(\delta_{2}\left(r_{2}, a\right)=p_{2}\right)$
(\Leftarrow) This implication direction is left as an exercise.

