Simulating Nondeterministic TMs

\rightarrow Nondeterministic TMs (NTMs)
$\Rightarrow \delta: \mathrm{Q} \times \Gamma \rightarrow \operatorname{Pow}(\mathrm{Q} \times \Gamma \times\{\mathrm{L}, \mathrm{R}\})$
\Rightarrow No ε transitions but can simulate them by reading and writing same symbol and moving head back to same position
\uparrow Any nondeterministic TM N can be simulated by a deterministic TM M
$\rightarrow \mathrm{N}$ accepts w iff there is at least 1 path in N 's tree for w ending in $\mathrm{q}_{\mathrm{ACC}}$

- Proof idea: Use breadth first search to simulate each branch
\Rightarrow Explore all branches at depth n before $n+1$

Simulating Nondeterminism: Details, Details

\downarrow Use a 3-tape DTM M for breadthfirst traversal of N's tree on w:
\Rightarrow Tape 1 keeps the input string w
\Rightarrow Tape 2 stores N's tape during simulation along 1 path (given by tape 3) up to a particular depth, starting with w
\Rightarrow Tape 3 stores current path number E.g. $\varepsilon=$ root node q_{0}
$213=$ path made up of $3^{\text {rd }}$ child of $1^{\text {st }}$ child of $2^{\text {nd }}$ child of root
\checkmark See text for more details

Closure Properties of Decidable Languages

- Decidable languages are closed under $\cup,^{\circ},{ }^{*}, \cap$, and complement
- Example: Closure under \cup
\uparrow Need to show that union of 2 decidable L's is also decidable
Let M1 be a decider for L1 and M2 a decider for L2
A decider M for $\mathrm{L} 1 \cup \mathrm{~L} 2$:
On input w:

1. Simulate M1 on w. If M1 accepts, then ACCEPT w. Otherwise, go to step 2 (because M1 has halted and rejected w)
2. Simulate M2 on w. If M2 accepts, ACCEPT w else REJECT w. M accepts w iff M1 accepts w OR M2 accepts w i.e. $\mathrm{L}(\mathrm{M})=\mathrm{L} 1 \cup \mathrm{~L} 2$

Closure Properties

- Consider the proof for closure under \cup

A decider M for L1 $\cup \mathrm{L} 2$:
On input w:

1. Simulate M1 on w. If M1 accepts, then ACCEPT w. Otherwise, go to step 2 (because M1 has halted and rejected w)
2. Simulate M2 on w. If M2 accepts, ACCEPT w else REJECT w. M accepts w iff M1 accepts w OR M2 accepts w
i.e. $\mathrm{L}(\mathrm{M})=\mathrm{L} 1 \cup \mathrm{~L} 2$

Will this proof work for showing Turing-recognizable languages are closed under \cup ? Why/Why not?

Closure for Recognizable Languages

- Turing-Recognizable languages are closed under $\cup,^{\circ},{ }^{*}$, and \cap (but not complement! We will see this later in Chapter 4)
- Example: Closure under \cap

Let M1 be a TM for L1 and M2 a TM for L2 (both may loop)
A TM M for $\mathrm{L} 1 \cap \mathrm{~L} 2$:
On input w:

1. Simulate M1 on w. If M1 halts and accepts w, go to step 2. If M1 halts and rejects w, then REJECT w. (If M1 loops, then M will also loop and thus reject w)
2. Simulate M2 on w. If M2 halts and accepts, ACCEPT w. If M2 halts and rejects, then REJECT w. (If M2 loops, then M will also loop and thus reject w)
M accepts wiff M1 accepts w AND M2 accepts wi.e. $L(M)=L 1 \cap L 2$
