#### What's on our platter today?

- ◆ Cliff's notes for equivalence of CFGs and PDAs
  - $\Rightarrow$  L = L(G) for some CFG G  $\Rightarrow$  L = L(M) for some PDA M
  - $\Rightarrow$  L = L(M) for some PDA M  $\Rightarrow$  L = L(G) for some CFG G
- → Pumping Lemma (one last time)
  - Statement of Pumping Lemma for CFLs
  - ⇒ Proof: On board and textbook
  - ⇒ Application: Showing a given L is not a CFL

R. Rao, CSE 322

#### From CFGs to PDAs

- **♦** L is a CFL  $\Rightarrow$  L = L(M) for some PDA M
- **♦** Proof Summary:
  - $\Rightarrow$  L is a CFL means L = L(G) for some CFG G = (V,  $\Sigma$ , R, S)
  - Construct PDA M = (Q, Σ, Γ, δ, q<sub>0</sub>, {q<sub>acc</sub>})
     M has only 4 main states (plus a few more for pushing strings)
     Q = {q<sub>0</sub>, q<sub>1</sub>, q<sub>2</sub>, q<sub>acc</sub>} ∪ E where E are states used in 2 below
  - $\Rightarrow$   $\delta$  has 4 components:
  - **1. Init. Stack**:  $\delta(q_0, \varepsilon, \varepsilon) = \{(q_1, \$)\}$  and  $\delta(q_1, \varepsilon, \varepsilon) = \{(q_2, \$)\}$
  - **2. Push & generate strings**:  $\delta(q_2, \varepsilon, A) = \{(q_2, w)\}\$  for  $A \rightarrow w$  in R
  - **3. Pop & match to input**:  $\delta(q_2, a, a) = \{(q_2, \epsilon)\}$
  - **4.** Accept if stack empty:  $\delta(q_2, \varepsilon, \$) = \{(q_{acc}, \varepsilon)\}$
- ♦ Can prove by induction:  $w \in L$  iff  $w \in L(M)$

#### From PDAs to CFGs

- ightharpoonup L = L(M) for some PDA M  $\Rightarrow$  L = L(G) for some CFG G
- ◆ Proof Summary: Simulate M's computation using a CFG
  - First, simplify M: 1. Only 1 accept state, 2. M empties stack before accepting, 3. Each transition either Push or Pop, not both or neither. Let  $M = (Q, \Sigma, \Gamma, \delta, q_0, \{q_{acc}\})$
  - $\Rightarrow$  Construct grammar G = (V,  $\Sigma$ , R, S)
  - $\Rightarrow$  Basic Idea: Define variables  $A_{pq}$  for simulating M
  - $\Rightarrow$  A<sub>pq</sub> generates all strings w such that w takes M from state p with empty stack to state q with empty stack
  - $\Rightarrow$  Then,  $A_{q0qacc}$  generates all strings w accepted by M

R. Rao, CSE 322

3

## From PDAs to CFGs (cont.)

- ightharpoonup L = L(M) for some PDA M  $\Rightarrow$  L = L(G) for some CFG G
- Proof (cont.)
  - $\Rightarrow$  Construct grammar G = (V,  $\Sigma$ , R, S) where

$$V = \{A_{pq} \mid p, q \in Q\}$$

$$S = A_{pq}$$

$$S = A_{q0qacc}$$

$$R = \{A_{pq} \rightarrow aA_{rs}b \mid p \xrightarrow{a, \varepsilon \rightarrow c} A_{rs} \xrightarrow{A_{rs}} s \xrightarrow{b, c \rightarrow \varepsilon} q\}$$

$$\begin{split} & \cup \{A_{pq} \rightarrow A_{pr} A_{rq} \mid p, q, r \in Q\} \\ & \cup \{A_{qq} \rightarrow \epsilon \mid q \in Q\} \end{split}$$

- ♦ See text for proof by induction:  $w \in L(M)$  iff  $w \in L(G)$
- **♦** Try to get G from M where  $L(M) = \{0^n1^n \mid n \ge 1\}$



### Pumping Lemma for CFLs

- ◆ Intuition: If L is CF, then some CFG G produces strings in L
  - ⇒ If some string in L is very long, it will have a very tall parse tree
  - $\Rightarrow$  If a parse tree is taller than the number of distinct variables in G, then *some variable* A *repeats*  $\Rightarrow$  A will have at least two sub-trees
  - ❖ We can pump up the original string by replacing A's smaller subtree with larger, and pump down by replacing larger with smaller
- ◆ Pumping Lemma for CFLs in all its glory:
  - $\Rightarrow$  If L is a CFL, then there is a number p (the "pumping length") such that for all strings *s* in L such that  $|s| \ge p$ , there exist *u*, *v*, *x*, *y*, and *z* such that s = uvxyz and:
  - 1.  $uv^i x y^i z \in L$  for all  $i \ge 0$ , and
  - 2.  $|vy| \ge 1$ , and
  - 3.  $|vxy| \le p$ .

R. Rao, CSE 322

5

## Why is the PL useful?



Yawn...yes, why indeed?

- Can use the pumping lemma to show a language L is not context-free
  - ⇒ 5 steps for a proof by contradiction:
  - 1. Assume L is a CFL.
  - 2. Let p be the pumping length for L given by the pumping lemma for CFLs.
  - 3. Choose cleverly an s in L of length at least p, such that
  - 4. For all possible ways of decomposing s into uvxyz, where  $|vy| \ge 1$  and  $|vxy| \le p$ ,
  - 5. Choose an  $i \ge 0$  such that  $uv^i x y^i z$  is not in L.
- Examples: Show the following are not CFLs
  - $\Rightarrow$  L = {0<sup>n</sup>1<sup>n</sup>0<sup>n</sup> | n \ge 0} and L = {0<sup>n</sup> | n is a prime number}

R. Rao, CSE 322 6

### Using the Pumping Lemma



- ◆ Show L = {0<sup>n</sup> | n is a prime number} is not a CFL
  - 1. Assume L is a CFL.
  - 2. Let p be the pumping length for L given by the pumping lemma for CFLs.
  - 3. Let  $s = 0^n$  where n is a prime  $\geq p$
  - 4. Consider *all possible ways* of decomposing *s* into *uvxyz*, where  $|vy| \ge 1$  and  $|vxy| \le p$ .

Then,  $vy = 0^r$  and  $uxz = 0^q$  where r + q = n and  $r \ge 1$ 

5. We need an  $i \ge 0$  such that  $uv^i x y^i z = 0^{ir+q}$  is not in L. (i = 0 won't work because q could be prime: e.g. 2 + 17 = 19) Choose i = (q + 2 + 2r). Then,  $ir + q = qr + 2r + 2r^2 + q = q(r+1) + 2r(r+1) = (q+2r)(r+1) = \text{not prime (since } r \ge 1)$ .

So,  $0^{ir+q}$  is not in L  $\Rightarrow$  contradicts pumping lemma. L is not a CFL.

R. Rao, CSE 322

## Two surprising results about CFLs



- ◆ CFLs are not closed under intersection
  - ⇒ **Proof**:  $L_1 = \{0^n 1^n 0^m \mid n, m \ge 0\}$  and  $L_2 = \{0^m 1^n 0^n \mid n, m \ge 0\}$  are both CFLs but  $L_1 \cap L_2 = \{0^n 1^n 0^n \mid n \ge 0\}$  is not a CFL.
- ◆ CFLs are not closed under complementation
  - **⇒** Proof by contradiction:

Suppose CFLs are closed under complement.

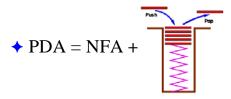
Then, for  $L_1,L_2$  above,  $\overline{L}_1\cup\overline{L}_2$  must be a CFL (since CFLs are closed under  $\cup$  -- see homework #5, problem 1).

But,  $\overline{\overline{L}_1 \cup \overline{L}}_2 = L_1 \cap L_2$  (by de Morgan's law).

 $L_1 \cap L_2 \!=\! \{0^n 1^n 0^n \mid n \geq 0\}$  is not a CFL  $\Rightarrow$  contradiction.

Therefore CFLs are not closed under complementation.

## Can we make PDAs more powerful?



♦ What if we allow arbitrary reads/writes to the stack instead of only push and pop?

R. Rao, CSE 322

# Enter...Turing Machines (Next Class)

→ Homework #5 due on Friday!

