
1R. Rao, CSE 322

Pushdown Automata (PDA)

Main Idea: Add a stack to an NFA
Stack provides potentially unlimited memory to an otherwise
finite memory machine (finite memory = finite no. of states)

PDA = NFA +

Stack is LIFO (“Last In, First Out”)
Two operations:

“Push” symbol onto top of stack
“Pop” symbol from top of stack

2R. Rao, CSE 322

6 Components of a PDA = (Q, Σ, Γ, δ, q0, F)

Q = set of states

Σ = input alphabet

Γ = stack alphabet

q0 = start state

F ⊆ Q = set of accept states

Transition function δ: Q × Σε × Γε → Pow(Q × Γε)
(current state, next input symbol, popped symbol) →
{set of (next state, pushed symbol)}
Input/popped/pushed symbol can be ε

New components!

3R. Rao, CSE 322

When does a PDA accept a string?

A PDA M accepts string w = w1 w2…wm if and only if there
exists at least one accepting computational path i.e. a
sequence of states r0, r1, …, rm and strings s0, s1, …, sm

(denoting stack contents) such that:

1. r0 = q0 and s0 = ε (M starts in q0 with empty stack)
2. (ri+1, b) ∈ δ(ri, wi+1, a) (States follow transition rules)
3. si = at and si+1 = bt for some a, b ∈ Γε and t ∈ Γ*

(M pops “a” from top of stack and pushes “b” onto stack)
4. rm∈ F (Last state in the sequence is an accept state)

4R. Rao, CSE 322

On-Board Examples

PDA for L = {w#wR| w ∈ {0,1}*} (# acts as a “delimiter”)
E.g. 0#0, 1#1, 10#01, 01#10, 1011#1101 ∈ L
L is a CFL (what is a CFG for it?)
Recognizing L using a PDA:

Push each symbol of w onto stack
On reaching # (middle of the input), pop the stack – this
yields symbols in wR – and compare to rest of input

PDA for L1 = {wwR| w ∈ {0,1}*}
Set of all even length palindromes over {0,1}

Recognizing L1 using a PDA:
Problem: Don’t know the middle of input string
Solution: Use nondeterminism (ε-transition) to guess!

5R. Rao, CSE 322

Are context free grammars equivalent to PDAs?
(i.e. Are the languages generated by CFGs the same as the

languages recognized by PDAs?)

I dunno – what do
you think?

6R. Rao, CSE 322

Next Time: Equivalence of CFGs and PDAs

Try: L is context free ⇒ there exists a PDA that accepts it

Proof idea:
PDA “simulates” context-free grammar (CFG) for L by:

1. Nondeterministically generating strings (in parallel)
using rules of the CFG starting from the start symbol,

2. Using the stack to store each intermediate string,
3. Checking the generated part of each string with the

input string in an “on-line” manner, and
4. Going to the accept state if and only if all characters of

the generated string match the input string.

