Pushdown Automata (PDA)

- Main Idea: Add a stack to an NFA
\Rightarrow Stack provides potentially unlimited memory to an otherwise finite memory machine (finite memory $=$ finite no. of states)

\Rightarrow Stack is LIFO ("Last In, First Out")
\Rightarrow Two operations:
" "Push" symbol onto top of stack
" "Pop" symbol from top of stack

6 Components of a PDA $=\left(\mathrm{Q}, \Sigma, \Gamma, \delta, \mathrm{q}_{0}, \mathrm{~F}\right)$

- $\mathrm{Q}=$ set of states
- $\Sigma=$ input alphabet

\rightarrow Transition function $\delta: \mathbf{Q} \times \Sigma_{\varepsilon} \times \Gamma_{\varepsilon} \rightarrow \operatorname{Pow}\left(\mathbf{Q} \times \Gamma_{\varepsilon}\right)$ \Rightarrow (current state, next input symbol, popped symbol) \rightarrow \{set of (next state, pushed symbol)\}
\Rightarrow Input/popped/pushed symbol can be ε

When does a PDA accept a string?

- A PDA M accepts string $\mathrm{w}=\mathrm{w}_{1} \mathrm{w}_{2} \ldots \mathrm{w}_{\mathrm{m}}$ if and only if there exists at least one accepting computational path i.e. a sequence of states $r_{0}, r_{1}, \ldots, r_{m}$ and strings $s_{0}, s_{1}, \ldots, s_{m}$ (denoting stack contents) such that:

1. $\mathrm{r}_{0}=\mathrm{q}_{0}$ and $\mathrm{s}_{0}=\varepsilon$ (M starts in q_{0} with empty stack)
2. $\left(\mathrm{r}_{\mathrm{i}+1}, \mathrm{~b}\right) \in \delta\left(\mathrm{r}_{\mathrm{i}}, \mathrm{w}_{\mathrm{i}+1}, \mathrm{a}\right)$ (States follow transition rules)
3. $\mathrm{s}_{\mathrm{i}}=\mathrm{a} t$ and $\mathrm{s}_{\mathrm{i}+1}=\mathrm{b} t$ for some $\mathrm{a}, \mathrm{b} \in \Gamma_{\varepsilon}$ and $t \in \Gamma^{*}$ (M pops " a " from top of stack and pushes " b " onto stack)
4. $\mathrm{r}_{\mathrm{m}} \in \mathrm{F}$ (Last state in the sequence is an accept state)

On-Board Examples

- PDA for $L=\left\{w \# w^{R} \mid w \in\{0,1\}^{*}\right\} \quad$ (\# acts as a "delimiter")
\Rightarrow E.g. 0\#0, 1\#1, 10\#01, 01\#10, 1011\#1101 $\in \mathrm{L}$
$\Rightarrow L$ is a CFL (what is a CFG for it ?)
\Rightarrow Recognizing L using a PDA:
- Push each symbol of w onto stack
- On reaching \# (middle of the input), pop the stack - this yields symbols in $w^{R}-$ and compare to rest of input
\rightarrow PDA for $L_{1}=\left\{w w^{R} \mid w \in\{0,1\}^{*}\right\}$
\Rightarrow Set of all even length palindromes over $\{0,1\}$
\checkmark Recognizing L_{1} using a PDA:
- Problem: Don't know the middle of input string
- Solution: Use nondeterminism (ε-transition) to guess!

Are context free grammars equivalent to PDAs?

(i.e. Are the languages generated by CFGs the same as the languages recognized by PDAs?)

Next Time: Equivalence of CFGs and PDAs

\downarrow Try: L is context free \Rightarrow there exists a PDA that accepts it

- Proof idea:

PDA "simulates" context-free grammar (CFG) for L by:

1. Nondeterministically generating strings (in parallel) using rules of the CFG starting from the start symbol,
2. Using the stack to store each intermediate string,
3. Checking the generated part of each string with the input string in an "on-line" manner, and
4. Going to the accept state if and only if all characters of the generated string match the input string.
