CSE 322: Regular Expressions and Finite Automata II

- Question from Last Time: Are regular expressions and NFAs/DFAs equivalent?
- We showed:
$\Rightarrow \mathbf{R} \rightarrow$ NFA: We can convert any reg. exp. R into an equivalent NFA N such that $L(R)=L(N)$
- How about showing the converse?
\Rightarrow NFA $\rightarrow \mathbf{R}$? Given an NFA N (or its equivalent DFA M), is there a reg. exp. R such that $L(M)=L(R)$?

From DFAs to Regular Expressions

- Steps for extracting regular expressions from DFAs:

1. Add new start state connected to old one via an ε-transition
2. Add new accept state receiving ε-transitions from all old ones
3. Keep applying 2 rules until only start and accept states remain:
4. Collapse Parallel Edges:

Note: Also applies to $\mathrm{q} 1=\mathrm{q} 2$
2. Remove "loopy" states:

Note: Also applies to $\mathrm{q} 1=\mathrm{q} 2$
R. Rao, CSE 322 (Example DFA: $\left\{\mathrm{w} \mid \# 0\right.$'s in w is not divisible by 3) ${ }_{2}$ on the board

Beyond the Regular world...

- Are there languages that are not regular?
- Idea: If a language violates a property obeyed by all regular languages, it cannot be regular!
\Rightarrow Pumping Lemma for showing non-regularity of languages

The Pumping Lemma for Regular Languages

\downarrow What is it?
\Rightarrow A statement ("lemma") that is true for all regular languages

- Why is it useful?
\Rightarrow Can be used to show that certain languages are not regular
\Rightarrow How? By contradiction: Assume the given language is regular and show that it does not satisfy the pumping lemma
- What is the idea behind it?
\Rightarrow Any regular language L has a DFA M that recognizes it
\Rightarrow If M has \mathbf{p} states and accepts a string of length \geq p, the sequence of states M goes through must contain a cycle (repetition of a state) due to the pigeonhole principle! Thus:
\Rightarrow All strings that make M go through this cycle 0 or any number of times are also accepted by M and should be in L.

Formal Statement of the Pumping Lemma

- Pumping Lemma: If L is a regular language, then there exists a number p (the "pumping length") such that for all strings s in L such that $|s| \geq \mathrm{p}$, there exist x, y, and z such that $s=x y z$ and:

1. $x y^{i} z \in \mathrm{~L}$ for all $i \geq 0$, and
2. $|y| \geq 1$, and
3. $|x y| \leq \mathrm{p}$.

- More Plainly: $\mathrm{p}=$ number of states of a DFA accepting L. Any string s in L of length $\geq \mathrm{p}$ can be expressed as $s=x y z$ where y is not null (y is the cycle), $|x y| \leq \mathrm{p}$ (cycle occurs within p state transitions), and any "pumped" string $x y^{i} z$ is in L for all $i \geq 0$ (go through the cycle 0 or more times).
- Proved in 1961 by Bar-Hillel, Peries and Shamir.

The Pumping Lemma

- Proof on the board...(see page 79 in textbook)
\Rightarrow See how it applies to $\{w \mid \# 0$'s in w is not divisible by 3$\}$
- In-Class Examples: Using the pumping lemma to show a language L is not regular
$\Rightarrow 5$ steps for a proof by contradiction:

1. Assume L is regular.
2. Let p be the pumping length given by the pumping lemma.
3. Choose cleverly an s in L of length at least p , such that
4. For any way of decomposing s into $x y z$, where $|x y| \leq \mathrm{p}$ and y isn't null,
5. You can find an $i \geq 0$ such that $x y^{i} z$ is not in L.

Weekend Exercise:

Try proving the following are not regular using the 5 steps in the previous slide:

$$
\begin{gathered}
\left\{0^{\mathrm{n}} 1^{\mathrm{n}} \mid \mathrm{n} \geq 0\right\} \\
\left\{0^{\mathrm{n}} 1^{\mathrm{m}} \mid \mathrm{n}>\mathrm{m}\right\}
\end{gathered}
$$

$\left\{0^{\mathrm{p}} \mid \mathrm{p}\right.$ is a prime number $\}$

Next Class: More on being Non-Regular

\downarrow Things to do over the weekend:
\Rightarrow Download homework \# 4 from course website:
www.cs.washington.edu/education/courses/322/02au/assignments.html
\Rightarrow Work on (and finish!) homework \# 4 (due Friday, Nov 1)
\Leftrightarrow Start reading Chapter 2 in the text
\Rightarrow Have a great "pumping lemma" of a weekend!

