
1R. Rao, CSE 322

CSE 322: Regular Expressions and Finite Automata II

Question from Last Time: Are regular expressions and
NFAs/DFAs equivalent?

We showed:
R NFA: We can convert any reg. exp. R into an
equivalent NFA N such that L(R) = L(N)

How about showing the converse?
NFA R? Given an NFA N (or its equivalent DFA M),
is there a reg. exp. R such that L(M) = L(R)?

2R. Rao, CSE 322

From DFAs to Regular Expressions

Steps for extracting regular expressions from DFAs:
1. Add new start state connected to old one via an ε–transition
2. Add new accept state receiving ε–transitions from all old ones
3. Keep applying 2 rules until only start and accept states remain:

1. Collapse Parallel Edges:

2. Remove “loopy” states:

q1 q2
b

a
q1 q2a ∪ b

Note: Also
applies to
q1 = q2

q1 q3 q2a c

b

q1 q2a b*c
Note: Also
applies to
q1 = q2

(Example DFA: {w | # 0’s in w is not divisible by 3)
on the board

3R. Rao, CSE 322

Regular expressions,
NFAs, and DFAs are

all equivalent!!!

4R. Rao, CSE 322

Beyond the Regular world…

Are there languages that are not regular?

Idea: If a language violates a property obeyed by all
regular languages, it cannot be regular!

Pumping Lemma for showing non-regularity of languages

But I’m just regular guy…

5R. Rao, CSE 322

The Pumping Lemma for Regular Languages

What is it?
A statement (“lemma”) that is true for all regular
languages

Why is it useful?
Can be used to show that certain languages are not
regular
How? By contradiction: Assume the given language is
regular and show that it does not satisfy the pumping
lemma

Σ*

6R. Rao, CSE 322

The Pumping Lemma for Regular Languages

What is the idea behind it?
Any regular language L has a DFA M that
recognizes it
If M has p states and accepts a string of length ≥
p, the sequence of states M goes through must
contain a cycle (repetition of a state) due to the
pigeonhole principle! Thus:
All strings that make M go through this cycle 0 or
any number of times are also accepted by M and
should be in L.

Σ*

7R. Rao, CSE 322

Formal Statement of the Pumping Lemma

Pumping Lemma: If L is a regular language, then there
exists a number p (the “pumping length”) such that for all
strings s in L such that |s| ≥ p, there exist x, y, and z such
that s = xyz and:
1. xyiz ∈ L for all i ≥ 0, and
2. |y| ≥ 1, and
3. |xy| ≤ p.

More Plainly: p = number of states of a DFA accepting L.
Any string s in L of length ≥ p can be expressed as s = xyz
where y is not null (y is the cycle), |xy| ≤ p (cycle occurs
within p state transitions), and any “pumped” string xyiz is
in L for all i ≥ 0 (go through the cycle 0 or more times).

Proved in 1961 by Bar-Hillel, Peries and Shamir.

8R. Rao, CSE 322

The Pumping Lemma

Proof on the board…(see page 79 in textbook)
See how it applies to {w | # 0’s in w is not divisible by 3}

In-Class Examples: Using the pumping lemma to show a
language L is not regular

5 steps for a proof by contradiction:
1. Assume L is regular.
2. Let p be the pumping length given by the pumping

lemma.
3. Choose cleverly an s in L of length at least p, such that
4. For any way of decomposing s into xyz, where |xy| ≤ p

and y isn't null,
5. You can find an i ≥ 0 such that xyiz is not in L.

9R. Rao, CSE 322

Weekend Exercise:

Try proving the following are not regular

using the 5 steps in the previous slide:

{0n1n | n ≥ 0}

{0n1m | n > m}

{0p | p is a prime number}

10R. Rao, CSE 322

Next Class: More on being Non-Regular

Things to do over the weekend:
Download homework # 4 from course website:
www.cs.washington.edu/education/courses/322/02au/assignments.html

Work on (and finish!) homework # 4 (due Friday, Nov 1)
Start reading Chapter 2 in the text
Have a great “pumping lemma” of a weekend!

Can I have
my Oscar now?

