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CSE 322: Regular Expressions and Finite Automata II

Question from Last Time: Are regular expressions and 
NFAs/DFAs equivalent?

We showed: 
R NFA: We can convert any reg. exp. R into an 
equivalent NFA N such that L(R) = L(N)

How about showing the converse?
NFA R? Given an NFA N (or its equivalent DFA M), 
is there a reg. exp. R such that L(M) = L(R)?
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From DFAs to Regular Expressions

Steps for extracting regular expressions from DFAs:
1. Add new start state connected to old one via an ε–transition
2. Add new accept state receiving ε–transitions from all old ones
3. Keep applying 2 rules until only start and accept states remain:

1. Collapse Parallel Edges:

2. Remove “loopy” states:

q1 q2
b

a
q1 q2a ∪ b

Note: Also 
applies to 
q1 = q2

q1 q3 q2a c

b

q1 q2a b*c
Note: Also 
applies to 
q1 = q2

(Example DFA: {w | # 0’s in w is not divisible by 3)
on the board
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Regular expressions, 
NFAs, and DFAs are 

all equivalent!!!
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Beyond the Regular world…

Are there languages that are not regular?

Idea: If a language violates a property obeyed by all 
regular languages, it cannot be regular!

Pumping Lemma for showing non-regularity of languages

But I’m just regular guy…
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The Pumping Lemma for Regular Languages

What is it?
A statement (“lemma”) that is true for all regular 
languages

Why is it useful?
Can be used to show that certain languages are not 
regular
How? By contradiction: Assume the given language is 
regular and show that it does not satisfy the pumping 
lemma

Σ*
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The Pumping Lemma for Regular Languages

What is the idea behind it?
Any regular language L has a DFA M that 
recognizes it
If M has p states and accepts a string of length ≥
p, the sequence of states M goes through must 
contain a cycle (repetition of a state) due to the 
pigeonhole principle! Thus:
All strings that make M go through this cycle 0 or 
any number of times are also accepted by M and 
should be in L. 

Σ*
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Formal Statement of the Pumping Lemma

Pumping Lemma: If L is a regular language, then there 
exists a number p (the “pumping length”) such that for all 
strings s in L such that |s| ≥ p, there exist x, y, and z such 
that s = xyz and:
1. xyiz ∈ L for all i ≥ 0, and
2. |y| ≥ 1, and
3. |xy| ≤ p.

More Plainly: p = number of states of a DFA accepting L. 
Any string s in L of length ≥ p can be expressed as s = xyz
where y is not null (y is the cycle), |xy| ≤ p (cycle occurs 
within p state transitions), and any “pumped” string xyiz is 
in L for all i ≥ 0 (go through the cycle 0 or more times).

Proved in 1961 by Bar-Hillel, Peries and Shamir.
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The Pumping Lemma

Proof on the board…(see page 79 in textbook)
See how it applies to {w | # 0’s in w is not divisible by 3}

In-Class Examples: Using the pumping lemma to show a 
language L is not regular

5 steps for a proof by contradiction:
1. Assume L is regular.
2. Let p be the pumping length given by the pumping 

lemma. 
3. Choose cleverly an s in L of length at least p, such that
4. For any way of decomposing s into xyz, where |xy| ≤ p 

and y isn't null, 
5. You can find an i ≥ 0 such that xyiz is not in L. 
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Weekend Exercise:

Try proving the following are not regular 

using the 5 steps in the previous slide:

{0n1n | n ≥ 0} 

{0n1m | n > m} 

{0p | p is a prime number}

10R. Rao, CSE 322

Next Class: More on being Non-Regular

Things to do over the weekend:
Download homework # 4 from course website:
www.cs.washington.edu/education/courses/322/02au/assignments.html

Work on (and finish!) homework # 4 (due Friday, Nov 1)
Start reading Chapter 2 in the text
Have a great “pumping lemma” of a weekend!

Can I have
my Oscar now?


