CSE 322: Regular Expressions and Finite Automata

- **♦ Last Time**: Definition of a <u>Regular Expression</u>
 - R is a regular expression iff

R is a string over $\Sigma \cup \{ \varepsilon, \emptyset, (,), \cup, * \}$ and R is:

- 1. Some symbol $a \in \Sigma$, or
- 2. ε, <u>or</u>
- 3. \emptyset , or
- 4. $(R_1 \cup R_2)$ where R_1 and R_2 are regular exps., or
- 5. $R_1R_2 = R_1^{\circ}R_2$ where R_1 and R_2 are reg. exps., or
- 6. R_1^* where R_1 is a regular expression.
- **Precedence**: Evaluate * first, then $^{\circ}$, then \cup
 - \Rightarrow E.g. $0 \cup 11^* = 0 \cup (1^\circ (1^*)) = \{0\} \cup \{1, 11, 111, ...\}$

R. Rao, CSE 322

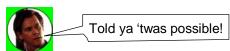
Examples

- ♦ What is R for each of the following languages?
 - 1. $L(R) = \{w \mid w \text{ contains exactly two 0's} \}$
 - 2. $L(R) = \{w \mid w \text{ contains at least two 0's} \}$
 - 3. $L(R) = \{w \mid w \text{ contains an even number of 0's} \}$
 - 4. $L(R) = \{w \mid w \text{ is a valid identifier in } C\}$
 - 5. $L(R) = \{w \mid w \text{ is what you hear in a Kevin Bacon movie}\}\$
 - 6. $L(R) = \{w \mid w \text{ does not contain } 00\}_{\mathbf{x}}$

(Example on board)

R. Rao, CSE 322 2

Regular Expressions and Finite Automata


- What is the relationship between regular expressions and DFAs/NFAs?
- **♦** Specifically:
 - R → NFA? Given a reg. exp. R, can we create an NFA N such that L(R) = L(N)?
 - 2. NFA \rightarrow R? Given an NFA N (or its equivalent DFA M), can we come up with a reg. exp. R such that L(M) = L(R)?

R. Rao, CSE 322

From Regular Expressions to NFAs

- ◆ Problem: Given any regular expression R, how do we construct an NFA N such that L(N) = L(R)?
- ❖ Soln.: Use the multi-part definition of regular expressions!!
 - Show how to construct an NFA for each possible case in the definition: R = a, or $R = \varepsilon$, or $R = \emptyset$, or $R = (R1 \cup R2)$, or $R = R1^{\circ}R2$, or $R = R1^{*}$.

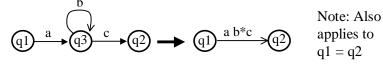
♦ Example: Draw NFA for $01\Sigma*10$

R. Rao, CSE 322 4

From NFAs/DFAs to Regular Expressions

- ♦ Problem: Given any NFA N, how do we construct a regular expression R such that L(N) = L(R)?
- ◆ Solution: First, convert NFA N to an equivalent DFA M to keep things simple. Then:
 - ➡ <u>Idea</u>: Collapse 2 or more edges in M labeled with single symbols to a new edge labeled with an equivalent regular expression
 - ⇒ This results in a "generalized" NFA (GNFA)
 - ❖ Our goal: Get a GNFA with 2 states (start and accept) connected by a single edge labeled with the required regular expression R

R. Rao, CSE 322


From NFAs/DFAs to Regular Expressions

- ♦ Steps for extracting regular expressions from DFAs:
 - 1. Add new start state connected to old one via an ε-transition
 - 2. Add new accept state receiving ε -transitions from all old ones
 - 3. Keep applying 2 rules until only start and accept states remain:
 - 1. Collapse Parallel Edges:

Note: Also applies to q1 = q2

2. Remove "loopy" states:

R. Rao, CSE 322 (Example: On board and in textbook)

6