
1R. Rao, CSE 322

Review of Chapters 0-1

See Midterm Review Slides
Emphasis on:

Sets, strings, and languages
Operations on strings/languages (concat, *, union, etc)
Lexicographic ordering of strings
DFAs and NFAs: definitions and how they work
Regular languages and properties
Regular expressions and GNFAs (see lecture slides)
Pumping lemma for regular languages and showing
nonregularity

2R. Rao, CSE 322

Context-Free Grammars (CFGs)

CFG G = (V, Σ, R, S)
Variables, Terminals, Rules, Start variable
uAv yields uwv if A → w is a rule in G: Written as uAv ⇒ uwv
u ⇒* v if u yields v in 0, 1, or more steps
L(G) = {w | S ⇒* w}
CFGs for regular languages: Convert DFA to a CFG (Create
variables for states and rules to simulate transitions)

Ambiguity: Grammar G is ambiguous if G has two or more
parse trees for some string w in L(G)

See lecture notes/text/homework for examples

Closure properties of Context-Free languages
Closed under ∪, concat, * but not ∩ or complementation.
See homework and lecture slides

3R. Rao, CSE 322

Pushdown Automata (PDA)

PDA P = (Q, Σ, Γ, δ, q0, F)
Q = set of states
Σ = input alphabet
Γ = stack alphabet
q0 = start state
F ⊆ Q = set of accept states
Transition function δ: Q × Σε × Γε → Pow(Q × Γε)
(current state, next input symbol, popped symbol) →
{set of (next state, pushed symbol)}
Input/popped/pushed symbol can be ε

Example PDAs for:
{w#wR| w ∈ {0,1}*}, {wwR| w ∈ {0,1}*}, Palindromes

4R. Rao, CSE 322

Context-Free Languages: Main Results

CFGs and PDAs are equivalent in computational power
Generate/recognize the same class of languages (CFLs)

1. If L = L(G) for some CFG G, then L = L(M) for some PDA M
Know how to convert a given CFG to a PDA

2. If L = L(M) for some PDA M, then L = L(G) for some CFG G
Be familiar with the construction – no need to memorize the
induction proof

Pumping Lemma for CFLs
Know the exact statement: L CFL ⇒ ∃p s.t. ∀s in L s.t. |s| ≥ p,
∃ u, v, x, y, and z s.t. s = uvxyz and:
1. uvixyiz ∈ L ∀ i ≥ 0, 2. |vy| ≥ 1, and 3. |vxy| ≤ p.

Using the PL to show languages are not CFLs
E.g. {0n1n0n | n ≥ 0} and {0n | n is a prime number}

5R. Rao, CSE 322

Turing Machines: Definition and Operation

TM M = (Q, Σ, Γ, δ, q0, qACC, qREJ)
Q = set of states
Σ = input alphabet not containing blank symbol “_”
Γ = tape alphabet containing blank “_”, all symbols in Σ, plus
possible temporary variables such as X, Y, etc.
q0 = start state
qACC = accept and halt state
qREJ = reject and halt state
Transition function δ: Q × Γ → Q × Γ × {L, R}

δ(current state, symbol under the head) = (next state, symbol to
write over current symbol, direction of head movement)

Configurations of a TM, definition of language L(M) of a TM M

6R. Rao, CSE 322

Decidable versus Recognizable Languages

A language is Turing-recognizable if there is a Turing
machine M such that L(M) = L

For all strings in L, M halts in state qACC
For strings not in L, M may either halt in qREJ or loop forever

A language is decidable if there is a “decider” Turing
machine M that halts on all inputs such that L(M) = L

For all strings in L, M halts in state qACC
For all strings not in L, M halts in state qREJ

Showing a language is decidable by construction:
Implementation level description of deciders
E.g. {0n1n0n | n ≥ 0}, {0n | n = m2 for some integer m}, see text

7R. Rao, CSE 322

Equivalence of TM Types & Church-Turing Thesis

Varieties of TMs: Know the definition, operation, and idea
behind proof of equivalence with standard TM

Multi-Tape TMs: TM with k tapes and k heads
Nondeterministic TMs (NTMs)

Decider if all branches halt on all inputs
Enumerator TM for L: Prints all strings in L (in any order,
possibly with repetitions) and only the strings in L

Can use any of these variants for showing a language is
Turing-recognizable or decidable

Church-Turing Thesis: Any formal definition of
“algorithms” or “programs” is equivalent to Turing machines

8R. Rao, CSE 322

Decidable Problems

Any problem can be cast as a language membership problem
Does DFA D accept input w? Equivalent to:
Is <D,w> in ADFA = {<D,w> | D is a DFA that accepts input w}?

Decidable problems concerning languages and machines:
ADFA
ANFA = {<N,w> | N is a NFA that accepts input w}
AREX = {<R,w> | R is a reg. exp. that generates string w}
Aempty-DFA = {<D> | D is a DFA and L(D) = ∅}
AEqual-DFA = {<C,D> | C and D are DFAs and L(C) = L(D)}
ACFG = {<G,w> | G is a CFG that generates string w}
Aempty-CFG = {<G> | G is a CFG and L(G) = ∅}

9R. Rao, CSE 322

Undecidability, Reducibility, Unrecognizability

ATM = {<M,w> | M is a TM and M accepts w} is Turing-
recognizable but not decidable (Proof by diagonalization)

To show a problem A is undecidable, reduce ATM to A
Show that if A was decidable, then you can use the decider for
A as a subroutine to decide ATM
E.g. Halting problem = “Does a program halt for an input or
go into an infinite loop?”
Can show that the Halting problem is undecidable by reducing
ATM to AH = { <M,w> | TM M halts on input w}

A is decidable iff A and A are both Turing-recognizable

Corollary: ATM and AH are not Turing-recognizable

