Review of Chapters 0-1

+ See Midterm Review Slides
< Emphasison:
» Sets, strings, and languages
» Operations on strings/languages (concat, *, union, etc)
» Lexicographic ordering of strings
» DFAs and NFAs: definitions and how they work
» Regular languages and properties
» Regular expressions and GNFAS (see lecture dides)
» Pumping lemma for regular languages and showing
nonregularity

R. Rao, CSE 322 1

Context-Free Grammars (CFGS)

+ CFGG=(V,Z,R, 9
< Variables, Terminals, Rules, Start variable
< UAvyiedsuwv if A — wisarulein G: Written as UAv = uwv
< u=*vifuyieddsvinO, 1, or more steps
< L(G) ={w|S=*w}
< CFGsfor regular languages: Convert DFA to a CFG (Create
variables for states and rules to simulate transitions)

+ Ambiguity: Grammar G is ambiguous if G has two or more

parse trees for some string w in L(G)
< Seelecture notes/text/homework for examples

+ Closure properties of Context-Free languages
< Closed under u, concat, * but not m or complementation.
< See homework and lecture slides

R. Rao, CSE 322 2

Pushdown Automata (PDA)

+ PDAP=(Q %, T,9,q,F
© Q = set of states
< X = input alphabet
< T = stack alphabet
v g, = Sart state
@ Fc Q = set of accept states
< Transition function 8: Q x X_x ', — Pow(Q x T")
< (current state, next input symbol, popped symbol) —
{set of (next state, pushed symbol)}
< Input/popped/pushed symbol can be e

+ Example PDAsfor:
< {wswR|w e {0,1}*}, {wwR|w € {0,1}*}, Palindromes

R. Rao, CSE 322 3

Context-Free Languages. Main Results

+ CFGsand PDAs are equivalent in computational power
< Generate/recognize the same class of languages (CFLS)
1. If L =L(G) for some CFG G, then L = L(M) for some PDA M
» Know how to convert agiven CFG to a PDA
2. If L=L(M) for some PDA M, then L = L(G) for some CFG G
» Befamiliar with the construction —no need to memorize the
induction proof

+ Pumping Lemmafor CFLs
< Know the exact statement: L CFL = dp st. VsinL st. |9 > p,
Fu, Vv, XY, andzst. s=uvxyz and:
LuixyzelLVi>0, 2 |w|>1and 3.|xy|<p.

+ Using the PL to show languages are not CFLs
< E.g {0M"0"|n>0} and{0"|nisa primenumber}

R. Rao, CSE 322 4

Turing Machines: Definition and Operation

+ TMM=(Q,%, T, 3, Gy, Gacer Gre)

© Q = set of states

< X = input alphabet not containing blank symbol “_”

< I = tape alphabet containing blank “_", all symbolsin X, plus
possible temporary variables such as X, Y, €c.

v g, = Sart state

@ Oacc = accept and halt state

@ Oge; = rgect and halt state

< Transition function 8: Qx I' - Qx I'x {L, R}

+ O(current state, symbol under the head) = (next state, symbol to
write over current symbol, direction of head movement)
< Configurations of aTM, definition of language L(M) of aTM M

R. Rao, CSE 322 5

Decidable versus Recognizable Languages

+ A language is Turing-recognizable if there isa Turing
machine M such that L(M) =L
< For al stringsin L, M haltsin state g,
< For stringsnot inL, M may either halt in gg¢; or loop forever

+ A language is decidable if there isa “decider” Turing
machine M that halts on all inputs such that L(M) =L
< For al stringsin L, M haltsin state g,
< For al stringsnot in L, M halts in state g

+ Showing alanguage is decidable by construction:
< Implementation level description of deciders
< E.g. {0"1"0" | n> 0}, {0" | n = n¥ for some integer m}, seetext

R. Rao, CSE 322 6

Equivalence of TM Types & Church-Turing Thesis

+ Varieties of TMs. Know the definition, operation, and idea
behind proof of equivalence with standard TM
< Multi-Tape TMs. TM with k tapes and k heads
< Nondeterministic TMs (NTMs)
» Decider if all branches halt on all inputs
< Enumerator TM for L: Prints al stringsin L (in any order,
possibly with repetitions) and only the stringsin L

+ Can use any of these variants for showing alanguageis
Turing-recognizable or decidable

+ Church-Turing Thesis: Any formal definition of
“algorithms’ or “programs” is equivalent to Turing machines

R. Rao, CSE 322 7

Decidable Problems

+ Any problem can be cast as alanguage membership problem
< Does DFA D accept input w? Equivalent to:
Is<D,w>in Ay, = {<D,w> | D isaDFA that accepts input w} ?

+ Decidable problems concerning languages and machines:
< Apka
@ Agra = {<N,w>| N isaNFA that accepts input w}
@ Agex = {<Rw> |Risareg. exp. that generates string w}
> Agnpy-ora = {<D>| D isaDFA and L(D) = @}
Agqua-ora = {<C,D>|Cand D are DFAsand L(C) = L(D)}
@ Agrg = {<G,w> | G isa CFG that generates string w}
2 Agmpy-cre = {<G> | GisaCFG and L(G) = &}

R. Rao, CSE 322 8

Undecidability, Reducibility, Unrecognizability

+ Ay ={<M,w>|MisaTM and M accepts w} is Turing-
recognizable but not decidable (Proof by diagonalization)

+ To show aproblem A is undecidable, reduce A, to A
< Show that if A was decidable, then you can use the decider for
A asasubroutine to decide Ay,
< E.g. Halting problem = “Does a program halt for an input or
go into an infinite loop?’
< Can show that the Halting problem is undecidabl e by reducing
Ay toA,={ <M,w>|TM M halts on input w}

+ A isdecidable iff A and A are both Turing-recognizable

< Corollary: KTM and A, arenot Turing-recognizable

R. Rao, CSE 322 9

