
1R. Rao, CSE 322

CSE 322: Midterm Review

Basic Concepts (Chapter 0)
Sets

Notation and Definitions
A = {x | rule about x}, x ∈ A, A ⊆ B, A = B
∃ (“there exists”), ∀ (“for all”)

Finite and Infinite Sets
Set of natural numbers N, integers Z, reals R etc.
Empty set ∅

Set operations: Know the definitions for proofs
Union: A ∪ B = {x | x ∈ A or x ∈ B}
Intersection A ∩ B = {x | x ∈ A and x ∈ B}
Complement A = {x | x ∉ A}

2R. Rao, CSE 322

Basic Concepts (cont.)

Set operations (cont.)
Power set of A = Pow(A) or 2A = set of all subsets of A

E.g. A = {0,1} 2A = {∅, {0}, {1}, {0,1}}
Cartesian Product A × B = {(a,b) | a ∈ A and b ∈ B}

Functions:
f: Domain → Range

Add(x,y) = x + y Add: Z × Z → Z
Definitions of 1-1 and onto (bijection if both)

3R. Rao, CSE 322

Strings

Alphabet ∑ = finite set of symbols, e.g. ∑ = {0,1}

String w = finite sequence of symbols ∈ ∑
w = w1w2…wn

String properties: Know the definitions
Length of w = |w| (|w| = n if w = w1w2…wn)
Empty string = ε (length of ε = 0)
Substring of w
Reverse of w = wR = wnwn-1…w1

Concatenation of strings x and y (append y to x)
yk = concatenate y to itself to get string of k y’s
Lexicographical order = order based on length and
dictionary order within equal length

4R. Rao, CSE 322

Languages and Proof Techniques

Language L = set of strings over an alphabet (i.e. L ⊆ ∑*)
E.g. L = {0n1n | n ≥ 0} over ∑ = {0,1}
E.g. L = {p | p is a syntactically correct C++ program} over ∑ =
ASCII characters

Proof Techniques: Look at lecture slides, handouts, and notes
1. Proof by counterexample
2. Proof by contradiction
3. Proof of set equalities (A = B)
4. Proof of “iff” (X⇔Y) statements (prove both X⇒Y and X⇐Y)
5. Proof by construction
6. Proof by induction
7. Pigeonhole principle
8. Dovetailing to prove a set is countably infinite E.g. Z or N × N
9. Diagonalization to prove a set is uncountable E.g. 2N or Reals

5R. Rao, CSE 322

Chapter 1 Review: Languages and Machines

q0

6R. Rao, CSE 322

Languages and Machines (Chapter 1)

Language = set of strings over an alphabet
Empty language = language with no strings = ∅
Language containing only empty string = {ε}

DFAs
Formal definition M = (Q, ∑, δ, q0, F)
Set of states Q, alphabet ∑, start state q0, accept (“final”)
states F, transition function δ: Q × ∑ → Q
M recognizes language L(M) = {w | M accepts w}
In class examples:
E.g. DFA for L(M) = {w | w ends in 0}
E.g. DFA for L(M) = {w | w does not contain 00}
E.g. DFA for L(M) = {w | w contains an even # of 0’s}

Try: DFA for L(M) = {w | w contains an even # of 0’s and an odd
number of 1’s}

7R. Rao, CSE 322

Languages and Machines (cont.)

Regular Language = language recognized by a DFA

Regular operations: Union ∪, Concatenation ° and star *
Know the definitions of A ∪ B, A°B and A*
∑ = {0,1} ∑* = {ε, 0 ,1, 00, 01, …}

Regular languages are closed under the regular operations
Means: If A and B are regular languages, we can show A ∪ B,
A°B and A* (and also B*) are regular languages
Cartesian product construction for showing A ∪ B is regular by
simulating DFAs for A and B in parallel

Other related operations: A ∩ B and complement A
Are regular languages closed under these operations?

8R. Rao, CSE 322

NFAs, Regular expressions, and GNFAs

NFAs vs DFAs
DFA: δ(state,symbol) = next state
NFA: δ(state,symbol or ε) = set of next states

Features: Missing outgoing edges for one or more symbols,
multiple outgoing edges for same symbol, ε-edges

Definition of: NFA N accepts a string w ∈ ∑*
Definition of: NFA N recognizes a language L(N) ⊆ ∑*
E.g. NFA for L = {w | w = x1a, x ∈ ∑* and a ∈ ∑}

Regular expressions: Base cases ε, ∅, a ∈ Σ, and R1 ∪ R2,
R1°R2 or R1*

GNFAs = NFAs with edges labeled by regular expressions
Used for converting DFAs to regular expressions

9R. Rao, CSE 322

Main Results and Proofs

L is a Regular Language iff
L is recognized by a DFA iff
L is recognized by an NFA iff
L is recognized by a GNFA iff
L is described by a Regular Expression

Proofs:
NFA DFA: subset construction (1 DFA state=subset of NFA states)
Reg Exp NFA: combine NFAs for base cases with ε-transitions
DFA GNFA Reg Exp: Repeat two steps:
1. Collapse two parallel edges to one edge labeled (a ∪ b), and
2. Replace edges through a state with a loop with one edge

labeled (ab*c)

10R. Rao, CSE 322

Other Results

Using NFAs to show that Regular Languages are closed
under:

Regular operations ∪, ° and *

Are Regular Languages closed under:
intersection?
complement (Exercise 1.10)?

Are other operations that regular languages are closed under?

11R. Rao, CSE 322

What about the
icannotact
operation?

What about the
reversal

operation?

What about the
subset

operation?

12R. Rao, CSE 322

Other Results

Are Regular Languages closed under:
reversal (Problem 1.24)?
subset ⊆ ?
superset ⊇ ?
no-prefix (Problem 1.32a)?
no-prefix(A) = {w ∈A | no proper prefix of w is in A}
no-extend (Problem 1.32b)?
no-extend(A) = {w ∈A | w is not a proper prefix of any

string in A}

13R. Rao, CSE 322

Pumping Lemma

Pumping lemma in plain English (sort of): If L is regular, then
there is a p (= number of states of a DFA accepting L) such
that any string s in L of length ≥ p can be expressed as s = xyz
where y is not null (y is the loop in the DFA), |xy| ≤ p (loop
occurs within p state transitions), and any “pumped” string
xyiz is in L for all i ≥ 0 (go through the loop 0 or more times).

Pumping lemma in plain Logic:
L regular ⇒ ∃p s.t. (∀s∈L s.t. |s| ≥ p (∃x,y,z∈∑* s.t. (s = xyz)

and (|y| ≥ 1) and (|xy| ≤ p) and (∀i ≥ 0, xyiz∈L)))

Is the other direction ⇐ also true?
No! See Problem 1.37 for a counterexample

14R. Rao, CSE 322

Proving Non-Regularity using the Pumping Lemma

Proof by contradiction to show L is not regular
1. Assume L is regular
2. Let p be some arbitrary number (“pumping length”)
3. Choose a long enough string s ∈ L such that |s| ≥ p
4. Let x,y,z be strings such that s = xyz, |y| ≥ 1, and |xy| ≤ p
5. Pick an i ≥ 0 such that xyiz ∉ L (for all x,y,z as in 4)
This contradicts the pump. lemma. Therefore, L is not regular

Examples: {0n1n|n ≥ 0}, {ww| w ∈∑*}, {0n |n is prime}, ADD
= {x=y+z | x, y, z are binary numbers and x is sum of y and z}

Can sometimes also use closure under ∩ (and/or complement)
E.g. If L ∩ B = L1, and B is regular while L1 is not regular, then
L is not regular (if L was regular, L1 would have to be regular)

15R. Rao, CSE 322

Some Applications of Regular Languages

Pattern matching and searching:
E.g. In Unix:

ls *.c
cp /myfriends/games/*.* /mydir/
grep ’Spock’ *trek.txt

Compilers:
id ::= letter (letter | digit)*
int ::= digit digit*
float ::= d d*.d*(ε | E d d*)
The symbol | stands for “or” (= union)

16R. Rao, CSE 322

Good luck on the midterm on monday!

You can bring one 8 1/2'' x 11'' review sheet

The questions sheet will have space for answers. I will also
bring extra blank sheets for those of you who balk at brevity.

Don’t sweat it!

• Go through the homeworks, lecture
slides, and examples in the text (Chapters 0 and 1 only)

• Do the practice midterm on the website
and avoid being surprised!

