- What is it?
\Rightarrow A statement ("lemma") that is true for all regular languages
- Why is it useful?
\Rightarrow Can be used to show that certain languages are not regular
\Rightarrow How? By contradiction: Assume the given language is regular and show that it does not satisfy the pumping lemma
- What is the idea behind it?
\Rightarrow Any regular language L has a DFA M that recognizes it
\Rightarrow If M has p states and accepts a string of length $\geq p$, the sequence of states M goes through must contain a cycle (repetition of a state) due to the pigeonhole principle! Thus:
\Rightarrow All strings that make M go through this cycle 0 or any number of times are also accepted by M and should be in L .

Formal Statement of the Pumping Lemma

\rightarrow Pumping Lemma: If L is a regular language, then there exists a number p (the "pumping length") such that for all strings s in L such that $|s| \geq \mathrm{p}$, there exist x, y, and z such that $s=x y z$ and:

1. $x y^{i} z \in \mathrm{~L}$ for all $i \geq 0$, and
2. $|y| \geq 1$, and
3. $|x y| \leq \mathrm{p}$.

- More Plainly: $\mathrm{p}=$ number of states of a DFA accepting L. Any string s in L of length $\geq \mathrm{p}$ can be expressed as $s=x y z$ where y is not null (y is the cycle), $|x y| \leq \mathrm{p}$ (cycle occurs within p state transitions), and any "pumped up" string $x y^{i} z$ is in L for all $i \geq 0$ (go through the cycle 0 or more times).
- Proved in 1961 by Bar-Hillel, Peries and Shamir.
R. Rao, CSE 322

The Pumping Lemma

- Proof on the board...(see page 79 in textbook)
\Rightarrow See how it applies to $\{\mathrm{w} \mid$ number of 0 's in w is not divisible by 3\}
- In-Class Examples: Using the pumping lemma to show a language L is not regular
$\Rightarrow 5$ steps for a proof by contradiction:

1. Assume L is regular.
2. Let p be the pumping length given by the pumping lemma.
3. Choose cleverly an s in L of length at least p , such that
4. For any way of decomposing s into $x y z$, where $|x y| \leq \mathrm{p}$ and y isn't null,
5. We can choose an $i \geq 0$ such that $x y^{i} z$ is not in L.

Proving non-regularity as a Two-Person game

- An alternate view of using the pumping lemma to snow a language L is not regular
\Rightarrow Think of it as a game between you and an opponent:

1. You: Assume L is regular
2. Opponent: Chooses some value p
3. You: Choose cleverly an s in L of length $\geq \mathrm{p}$
4. Opponent: Breaks s down into some $x y z$, where $|x y| \leq \mathrm{p}$ and y is not null,
5. You: Need to choose an $i \geq 0$ such that $x y^{i} z$ is not in L (in order to win (the prize of non-regularity)!).

- See how this works for showing $\left\{0^{\mathrm{n}} 1^{\mathrm{n}} \mid \mathrm{n} \geq 0\right\}$ is not regular.

The Pumping Lemma Song (by Harry Mairson)

Any regular language L has a magic number p
And any long-enough word s in L has the following property:
Amongst its first p symbols is a segment you can find
Whose repetition or omission leaves s amongst its kind.
So if you find a language L which fails this acid test,
And some long word you pump becomes distinct from all the rest,
By contradiction you have shown that language L is not
A regular guy, resilient to the damage you have wrought.
But if, upon the other hand, s stays within its L,
Then either L is regular, or else you chose not well.
For s is $x y z$, and y cannot be null,
And y must come before p symbols have been read in full.

