CSE 322: Midterm Review - **♦ Basic Concepts** (Chapter 0) - ⇒ Sets - Notation and Definitions - $A = \{x \mid \text{rule about } x\}, x \in A, A \subseteq B, A = B$ - \exists ("there exists"), \forall ("for all") - **▶** Finite and Infinite Sets - Set of natural numbers N, integers Z, reals R etc. - Empty set ∅ - ▶ Set operations: Know the definitions for proofs - Union: $A \cup B = \{x \mid x \in A \text{ or } x \in B\}$ - Intersection $A \cap B = \{x \mid x \in A \text{ and } x \in B\}$ - Complement $\overline{A} = \{x \mid x \notin A\}$ R. Rao, CSE 322 ## Basic Concepts (cont.) - ♦ Set operations (cont.) - \Rightarrow Power set of A = Pow(A) or 2^A = set of all subsets of A - \bullet E.g. A = $\{0,1\}$ \rightarrow 2^A = $\{\emptyset, \{0\}, \{1\}, \{0,1\}\}$ - \Rightarrow Cartesian Product $A \times B = \{(a,b) \mid a \in A \text{ and } b \in B\}$ - **♦** Functions: - \Rightarrow f: Domain \rightarrow Range - $Add(x,y) = x + y \rightarrow Add: Z \times Z \rightarrow Z$ - ⇒ Definitions of 1-1 and onto (bijection if both) ## Strings - ♦ Alphabet Σ = finite set of symbols, e.g. Σ = {0,1} - String w = finite sequence of symbols ∈ ∑ ⇒ w = w₁w₂...w_n - ◆ String properties: Know the definitions - \Rightarrow Length of w = |w| $(|w| = n \text{ if } w = w_1 w_2 \dots w_n)$ - \Rightarrow Empty string = ε (length of $\varepsilon = 0$) - Substring of w - \Rightarrow Reverse of $w = w^R = w_n w_{n-1} ... w_1$ - \Rightarrow Concatenation of strings x and y (append y to x) - \Rightarrow y^k = concatenate y to itself to get string of k y's - ⇒ Lexicographical order = order based on length and dictionary order within equal length R. Rao, CSE 322 ## Languages and Proof Techniques - ♦ Language L = set of strings over an alphabet (i.e. L $\subseteq \Sigma^*$) - \Rightarrow E.g. $L = \{0^n 1^n \mid n \ge 0\}$ over $\Sigma = \{0,1\}$ - ⇒ E.g. L = {p | p is a syntactically correct C++ program} over ∑ = ASCII characters - ◆ Proof Techniques: Look at lecture slides, handouts, and notes - Proof by counterexample - Proof by contradiction - \Rightarrow Proof of set equalities (A = B) - \Rightarrow Proof of "iff" (X \Leftrightarrow Y) statements (prove both X \Rightarrow Y and X \Leftarrow Y) - ⇒ Proof by construction - Proof by induction - Pigeonhole principle - \Rightarrow Dovetailing to prove a set is countably infinite E.g. Z or N × N - Diagonalization to prove a set is uncountable E.g. 2^N or Reals R. Rao, CSE 322 4 ## Languages and Machines (Chapter 1) - ◆ Language = set of strings over an alphabet - \Rightarrow Empty language = language with no strings = \emptyset - \Rightarrow Language containing only empty string = $\{\epsilon\}$ - ◆ DFAs - \Rightarrow Formal definition M = (Q, Σ , q₀, δ , F) - Set of states Q, alphabet Σ , start state q_0 , accept ("final") states F, transition function $\delta: Q \times \Sigma \to Q$ - \Rightarrow M recognizes language L(M) = {w | M accepts w} - In class examples: - \Rightarrow E.g. DFA for L(M) = {w | w ends in 0} - \Rightarrow E.g. DFA for L(M) = {w | w does not contain 00} - \Rightarrow E.g. DFA for L(M) = {w | w contains an even # of 0's} Try: DFA for $L(M) = \{w \mid w \text{ contains an even } \# \text{ of } 0\text{'s and an odd number of } 1\text{'s}\}$ R. Rao, CSE 322 # Languages and Machines (cont.) - ◆ Regular Language = language recognized by a DFA - ♦ Regular operations: Union ∪, Concatenation ∘ and star * - \Rightarrow Know the definitions of A \cup B, A₀B and A* - $\Rightarrow \Sigma = \{0,1\} \rightarrow \Sigma^* = \{\epsilon, 0, 1, 00, 01, ...\}$ - ◆ Regular languages are closed under the regular operations - \Rightarrow Means: If A and B are regular languages, we can show A \cup B, A \circ B and A* (and also B*) are regular languages - \Rightarrow Cartesian product construction for showing $A \cup B$ is regular by simulating DFAs for A and B in parallel - \bullet Other related operations: A \cap B and complement \overline{A} - Are regular languages closed under these operations? # NFAs, Regular expressions, and GNFAs - ♦ NFAs vs DFAs - \Rightarrow DFA: $\delta(\text{state,symbol}) = \text{next state}$ - \Rightarrow NFA: δ(state, symbol or ε) = set of next states - Features: Missing outgoing edges for one or more symbols, multiple outgoing edges for same symbol, ε-edges - ⇒ Definition of: NFA N accepts a string $w \in \Sigma^*$ - ⇒ Definition of: NFA N recognizes a language $L(N) \subseteq \Sigma^*$ - \Rightarrow E.g. NFA for L = {w | w = x1a, x \in \sum \text{x} \in \text{x} \text{ and } a \in \sum \text{}} - Regular expressions: Base cases ε, Ø, a ∈ Σ, and R1 ∪ R2, R1°R2 or R1* - ◆ GNFAs = NFAs with edges labeled by regular expressions ❖ Used for converting DFAs to regular expressions R. Rao, CSE 322 #### Main Results and Proofs - ◆ L is a Regular Language iff - ⇒ L is recognized by a DFA iff - L is recognized by an NFA iff - ⇒ L is recognized by a GNFA iff - ⇒ L is described by a Regular Expression - ♦ Proofs: - ⇒ NFA→DFA: subset construction (1 DFA state=subset of NFA states) - \Rightarrow Reg Exp \rightarrow NFA: combine NFAs for base cases with ε -transitions - ⇒ DFA→GNFA→Reg Exp: Collapse two parallel edges to one edge (a ∪ b) and replace edges through a state with a loop with one edge (ab*c) #### Other Results - Using NFAs to show that Regular Languages are closed under: - ⇒ Regular operations ∪, ∘ and * - ◆ Are Regular Languages closed under: - ❖ intersection? - ⇒ complement (Exercise 1.10)? - ⇒ reversal (Problem 1.24)? - \Rightarrow subset \subseteq ? - \Rightarrow superset \supseteq ? - ⇒ no-prefix? - ⇒ no-extend? R. Rao, CSE 322 # **Pumping Lemma** - ♦ Pumping lemma in plain English (sort of): If L is regular, then there is a p (= number of states of a DFA accepting L) such that any string s in L of length ≥ p can be expressed as s = xyz where y is not null (y is the loop in the DFA), $|xy| \le p$ (loop occurs within p state transitions), and any "pumped" string xy^iz is in L for all $i \ge 0$ (go through the loop 0 or more times). - ♦ Pumping lemma in plain Logic: L regular ⇒ $\exists p \text{ s.t. } (\forall s \in L \text{ s.t. } |s| \ge p (\exists x, y, z \in \Sigma^* \text{ s.t. } (s = xyz)$ and $(|y| \ge 1)$ and $(|xy| \le p)$ and $(\forall i \ge 0, xy^iz \in L)))$ ## Proving Non-Regularity using the Pumping Lemma - ◆ Proof by contradiction to show L is not regular - 1. Assume L is regular - 2. Let p be some number ("pumping length") - 3. Choose a long enough string $s \in L$ such that $|s| \ge p$ - 4. Let x,y,z be strings such that s = xyz, $|y| \ge 1$, and $|xy| \le p$ - 5. Pick an $i \ge 0$ such that $xy^iz \notin L$ (for all x,y,z as in 4) This contradicts the pump. lemma. Therefore, L is not regular - **→** Typical Examples: $\{0^n1^n|n \ge 0\}$, $\{ww|w \in \Sigma^*\}$, $\{ww^R|w \in \Sigma^*\}$, $\{0^n|n \text{ is prime}\}$ - Can sometimes also use closure under ∩ (and/or complement) - \Rightarrow E.g. If $L \cap B = L_1$, and B is regular while L_1 is not regular, then L is not regular (if L was regular, L_1 would have to be regular) R. Rao, CSE 322 ## Some Applications of Regular Languages - ◆ Pattern matching and searching: - ⇒ E.g. In Unix: - ▶ ls *.c - cp /myfriends/games/*.* /mydir/ - ∮ grep 'Spock' *trek.txt - **♦** Compilers: - id ::= letter (letter | digit)* - ⇒ int ::= digit digit* - \Rightarrow float ::= d d*.d*(ϵ |E d d*) - ⇒ The symbol | stands for "or" (= union)