
1R. Rao, CSE 322

CSE 322: Midterm Review

✦ Basic Concepts (Chapter 0)
➭ Sets

➧ Notation and Definitions
� A = {x | rule about x}, x ∈ A, A ⊆ B, A = B
� ∃ (“there exists”), ∀ (“for all”)

➧ Finite and Infinite Sets
� Set of natural numbers N, integers Z, reals R etc.
� Empty set ∅

➧ Set operations: Know the definitions for proofs
� Union: A ∪ B = {x | x ∈ A or x ∈ B}
� Intersection A ∩ B = {x | x ∈ A and x ∈ B}
� Complement A = {x | x ∉ A}

2R. Rao, CSE 322

Basic Concepts (cont.)

✦ Set operations (cont.)
➭ Power set of A = Pow(A) or 2A = set of all subsets of A

➧ E.g. A = {0,1} ! 2A = {∅, {0}, {1}, {0,1}}
➭ Cartesian Product A × B = {(a,b) | a ∈ A and b ∈ B}

✦ Functions:
➭ f: Domain → Range

➧ Add(x,y) = x + y ! Add: Z × Z → Z
➭ Definitions of 1-1 and onto (bijection if both)

3R. Rao, CSE 322

Strings

✦ Alphabet ∑ = finite set of symbols, e.g. ∑ = {0,1}

✦ String w = finite sequence of symbols ∈ ∑
➭ w = w1w2…wn

✦ String properties: Know the definitions
➭ Length of w = |w| (|w| = n if w = w1w2…wn)
➭ Empty string = ε (length of ε = 0)
➭ Substring of w
➭ Reverse of w = wR = wnwn-1…w1

➭ Concatenation of strings x and y (append y to x)
➭ yk = concatenate y to itself to get string of k y’s
➭ Lexicographical order = order based on length and

dictionary order within equal length

4R. Rao, CSE 322

Languages and Proof Techniques

✦ Language L = set of strings over an alphabet (i.e. L ⊆ ∑*)
➭ E.g. L = {0n1n | n ≥ 0} over ∑ = {0,1}
➭ E.g. L = {p | p is a syntactically correct C++ program} over ∑ =

ASCII characters

✦ Proof Techniques: Look at lecture slides, handouts, and notes
➭ Proof by counterexample
➭ Proof by contradiction
➭ Proof of set equalities (A = B)
➭ Proof of “iff” (X⇔Y) statements (prove both X⇒Y and X⇐Y)
➭ Proof by construction
➭ Proof by induction
➭ Pigeonhole principle
➭ Dovetailing to prove a set is countably infinite E.g. Z or N × N
➭ Diagonalization to prove a set is uncountable E.g. 2N or Reals

5R. Rao, CSE 322

Languages and Machines (Chapter 1)

✦ Language = set of strings over an alphabet
➭ Empty language = language with no strings = ∅
➭ Language containing only empty string = {ε}

✦ DFAs
➭ Formal definition M = (Q, ∑, q0, δ, F)
➭ Set of states Q, alphabet ∑, start state q0, accept (“final”)

states F, transition function δ: Q × ∑ → Q
➭ M recognizes language L(M) = {w | M accepts w}
➭ In class examples:
➭ E.g. DFA for L(M) = {w | w ends in 0}
➭ E.g. DFA for L(M) = {w | w does not contain 00}
➭ E.g. DFA for L(M) = {w | w contains an even # of 0’s}
Try: DFA for L(M) = {w | w contains an even # of 0’s and an odd

number of 1’s}

6R. Rao, CSE 322

Languages and Machines (cont.)

✦ Regular Language = language recognized by a DFA

✦ Regular operations: Union ∪, Concatenation ° and star *
➭ Know the definitions of A ∪ B, A°B and A*
➭ ∑ = {0,1} ! ∑* = {ε, 0 ,1, 00, 01, …}

✦ Regular languages are closed under the regular operations
➭ Means: If A and B are regular languages, we can show A ∪ B,

A°B and A* (and also B*) are regular languages
➭ Cartesian product construction for showing A ∪ B is regular by

simulating DFAs for A and B in parallel

✦ Other related operations: A ∩ B and complement A
➭ Are regular languages closed under these operations?

7R. Rao, CSE 322

NFAs, Regular expressions, and GNFAs

✦ NFAs vs DFAs
➭ DFA: δ(state,symbol) = next state
➭ NFA: δ(state,symbol or ε) = set of next states

➧ Features: Missing outgoing edges for one or more symbols,
multiple outgoing edges for same symbol, ε-edges

➭ Definition of: NFA N accepts a string w ∈ ∑*
➭ Definition of: NFA N recognizes a language L(N) ⊆ ∑*
➭ E.g. NFA for L = {w | w = x1a, x ∈ ∑* and a ∈ ∑}

✦ Regular expressions: Base cases ε, ∅, a ∈ Σ, and R1 ∪ R2,
R1°R2 or R1*

✦ GNFAs = NFAs with edges labeled by regular expressions
➭ Used for converting DFAs to regular expressions

8R. Rao, CSE 322

Main Results and Proofs

✦ L is a Regular Language iff
➭ L is recognized by a DFA iff
➭ L is recognized by an NFA iff
➭ L is recognized by a GNFA iff
➭ L is described by a Regular Expression

✦ Proofs:
➭ NFA!DFA: subset construction (1 DFA state=subset of NFA states)
➭ Reg Exp!NFA: combine NFAs for base cases with ε-transitions
➭ DFA!GNFA!Reg Exp: Collapse two parallel edges to one edge

(a ∪ b) and replace edges through a state with a loop with one
edge (ab*c)

9R. Rao, CSE 322

Other Results

✦ Using NFAs to show that Regular Languages are closed
under:
➭ Regular operations ∪, ° and *

✦ Are Regular Languages closed under:
➭ intersection?
➭ complement (Exercise 1.10)?
➭ reversal (Problem 1.24)?
➭ subset ⊆ ?
➭ superset ⊇ ?
➭ no-prefix?
➭ no-extend?

10R. Rao, CSE 322

Pumping Lemma

✦ Pumping lemma in plain English (sort of): If L is regular, then
there is a p (= number of states of a DFA accepting L) such
that any string s in L of length ≥ p can be expressed as s = xyz
where y is not null (y is the loop in the DFA), |xy| ≤ p (loop
occurs within p state transitions), and any “pumped” string
xyiz is in L for all i ≥ 0 (go through the loop 0 or more times).

✦ Pumping lemma in plain Logic:
L regular ⇒ ∃p s.t. (∀s∈L s.t. |s| ≥ p (∃x,y,z∈∑* s.t. (s = xyz)

and (|y| ≥ 1) and (|xy| ≤ p) and (∀i ≥ 0, xyiz∈L)))

11R. Rao, CSE 322

Proving Non-Regularity using the Pumping Lemma

✦ Proof by contradiction to show L is not regular
1. Assume L is regular
2. Let p be some number (“pumping length”)
3. Choose a long enough string s ∈ L such that |s| ≥ p
4. Let x,y,z be strings such that s = xyz, |y| ≥ 1, and |xy| ≤ p
5. Pick an i ≥ 0 such that xyiz ∉ L (for all x,y,z as in 4)
This contradicts the pump. lemma. Therefore, L is not regular

✦ Typical Examples: {0n1n|n ≥ 0}, {ww| w ∈∑*}, {wwR| w
∈∑*}, {0n |n is prime}

✦ Can sometimes also use closure under ∩ (and/or complement)
➭ E.g. If L ∩ B = L1, and B is regular while L1 is not regular, then

L is not regular (if L was regular, L1 would have to be regular)

12R. Rao, CSE 322

Some Applications of Regular Languages

✦ Pattern matching and searching:
➭ E.g. In Unix:

➧ ls *.c
➧ cp /myfriends/games/*.* /mydir/
➧ grep ’Spock’ *trek.txt

✦ Compilers:
➭ id ::= letter (letter | digit)*
➭ int ::= digit digit*
➭ float ::= d d*.d*(ε | E d d*)

➭ The symbol | stands for “or” (= union)

