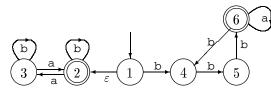
CSE 322 Intro to Formal Models in CS Midterm Exam

W. L. Ruzzo SCORE /20 **DIRECTIONS:** 1 2 • Closed book, closed notes, except one page summary. /20 3 /20 • Time limit 50 minutes. 4 /20 5 /20 • If possible, answer all problems on this sheet. (But attach Total /100 separate sheets if necessary.) 1. Circle True or False below. Very briefly justify your answers, e.g. by giving a counter example, by citing a theorem we've proved, *briefly* sketching a construction, etc. Assume A and R are subsets of Σ^* for some fixed alphabet Σ . (a) If R is regular, and $A \subseteq R$, then A is regular. $T \in F$ (b) If R is regular, and $R \subseteq A$, then A is regular. $T \in F$

(c) If R is regular, and $A \cap R$ is regular, then A is regular. \dots T F

(d) If R is regular, but $A \cap R$ is non-regular, then A is non-regular.	т		F
(d) If Λ is regular, but $A + \Lambda$ is non-regular, then A is non-regular.	· · · · I	-	L,

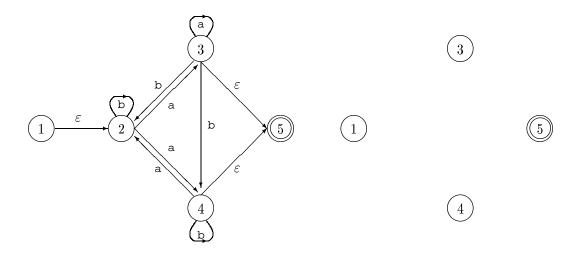

(e)	If R is regular, then R^*	[*] is regular.	 Т	F
· · ·	U ,	\mathcal{O}		

Autumn	2000

Handout 12 1 Nov 2000

2. Give a *deterministic* finite automaton recognizing the language $L = \{x \in \{a, b\}^* \mid x \text{ contains} an even number of a's and an odd number of b's\}$. E.g., b and aaaba are in L, but abab and baaa are not. You do not need to give a correctness proof for your machine.

3. Consider the NFA $M = (Q, \Sigma, \delta, q_0, F)$ with the following transition diagram:



(a) In what states might the NFA be after reading input *bbba*?

(b) Does the NFA accept *bbba*? Why or why not?

- (c) Suppose you apply the "subset" construction to build an equivalent DFA $M' = (Q', \Sigma, \delta', q'_0, F')$. What state $q \in Q'$ would M' be in after reading the input *bbba*?
- (d) Is q above in F'? Why or why not?
- (e) In terms of the states of M, what is the start state of M'? $q'_0 =$
- (f) What state is $\delta'(\{2,4\},a)$? _____ $\delta'(\{2,6\},a)$? _____ $\delta'(\{5\},a)$? _____
- (g) Describe in English the language accepted by M. (Say what it is, not how M operates.)

4. Using the construction given in the text and lecture for converting an FA to a regular expression, eliminate state number 2 (and *only* state 2) from the following GNFA. The special start- and final-states have already been added. Arrows labeled \emptyset are not shown. You may also omit them from your answer if you prefer, and you may simplify terms involving \emptyset (e.g., $x \cup y \cdot \emptyset \equiv x$), but do *not* otherwise simplify the expressions.

5. Let $L = \{x \in \{a, b\}^* \mid x \text{ contains more } a \text{ 's than } b \text{ 's }\}$. Prove (using any method you wish) that L is not a regular language.