CSE 322
 Intro to Formal Models in CS
 Midterm Exam
 Solution

1. Circle True or False below. Very briefly justify your answers, e.g. by giving a counter example, by citing a theorem we've proved, briefly sketching a construction, etc. Assume A and R are subsets of Σ^{*} for some fixed alphabet Σ.
(a) If R is regular, and $A \subseteq R$, then A is regular.
FALSE. Counterexample: $A=\left\{a^{n} b^{n} \mid n \geq 0\right\}, R=\{a, b\}^{*}$.
(b) If R is regular, and $R \subseteq A$, then A is regular.
FALSE. Counterexample: $A=\left\{a^{n} b^{n} \mid n \geq 0\right\}, R=\emptyset$.
(c) If R is regular, and $A \cap R$ is regular, then A is regular.
FALSE. Counterexample: $A=\left\{a^{n} b^{n} \mid n \geq 0\right\}, R=\emptyset$.
(d) If R is regular, but $A \cap R$ is non-regular, then A is non-regular.
TRUE, by closure of the class of regular languages under \cap.
(e) If R is regular, then R^{*} is regular.
TRUE, by closure of the class of regular languages under *.
2. Give a deterministic finite automaton recognizing the language $L=\left\{x \in\{a, b\}^{*} \mid x\right.$ contains an even number of a 's and an odd number of b 's $\}$. E.g., b and $a a a b a$ are in L, but $a b a b$ and baaa are not. You do not need to give a correctness proof for your machine.

3. Consider the NFA $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ with the following transition diagram:

(a) In what states might the NFA be after reading input $b b b a$?
(b) Does the NFA accept $b b b a$? Why or why not? \qquad Yes, since 6 is a final state.
(c) Suppose you apply the "subset" construction to build an equivalent DFA $M^{\prime}=\left(Q^{\prime}, \Sigma, \delta^{\prime}, q_{0}^{\prime}, F^{\prime}\right)$. What state $q \in Q^{\prime}$ would M^{\prime} be in after reading the input $b b b a$? $\{3,6\}$
(d) Is q above in F^{\prime} ? Why or why not? \qquad
(e) In terms of the states of M, what is the start state of $M^{\prime} ? q_{0}^{\prime}=\square\{1,2\}$
(f) What state is $\delta^{\prime}(\{2,4\}, a)$? \qquad $\delta^{\prime}(\{2,6\}, a) ?$ $\{3,6\}$ $\delta^{\prime}(\{5\}, a) ?-\emptyset$
(g) Describe in English the language accepted by M. (Say what it is, not how M operates.)
M accepts strings $x \in\{a, b\}^{*}$ with either
1) the number of b's in x, and the number of b's to the left of every a (if any) in x are positive multiples of 3 , or
2) the number of a's in x is even.

FYI, a corresponding regular expression would be (bbba*)* $\cup \mathrm{b}^{*}\left(\mathrm{ab}{ }^{*} \mathrm{ab}^{*}\right)^{*}$.
4. Using the construction given in the text and lecture for converting an FA to a regular expression, eliminate state number 2 (and only state 2) from the following GNFA. The special start- and final-states have already been added. Arrows labeled \emptyset are not shown. You may also omit them from your answer if you prefer, and you may simplify terms involving \emptyset (e.g., $x \cup y \cdot \emptyset \equiv x$), but do not otherwise simplify the expressions.

5. Let $L=\left\{x \in\{a, b\}^{*} \mid x\right.$ contains more a 's than b 's $\}$. Prove (using any method you wish) that L is not a regular language.

Assume L is regular. Let p be the pumping length for L, and let $s=a^{p} b^{p-1}$. Clearly s has more a's than b's, so it is in L, and $|s| \geq p$, so by the pumping lemma there must exist strings x, y, z such that $|x y| \leq p,|y|>0$, and for all $i \geq 0, x y^{i} z \in L$. But $x y^{0} z=a^{p-|y|} b^{p-1} \notin L$, since $p-|y| \leq p-1$. This contradicts the conclusion of the pumping lemma, and therefore L cannot be regular.

