CSE 322 Intro to Formal Models in CS Midterm Exam Solution

Handout 13

W. L. Ruzzo

Autumn 2000

1 Nov 2000

1. Circle True or False below. *Very briefly justify your answers*, e.g. by giving a counter example, by citing a theorem we've proved, *briefly* sketching a construction, etc. Assume A and R are subsets of Σ^* for some fixed alphabet Σ .

(a) If R is regular, and $A \subseteq R$, then A is regular.	Т	F
FALSE. Counterexample: $A = \{a^n b^n \mid n \ge 0\}, R = \{a, b\}^*.$		
(b) If R is regular, and $R \subseteq A$, then A is regular.	Т	F
FALSE. Counterexample: $A = \{a^n b^n \mid n \ge 0\}, R = \emptyset.$		
(c) If R is regular, and $A \cap R$ is regular, then A is regular.	Т	F
FALSE. Counterexample: $A = \{a^n b^n \mid n \ge 0\}, R = \emptyset.$]	
(d) If R is regular, but $A \cap R$ is non-regular, then A is non-regular.	Т	F
TRUE, by closure of the class of regular languages under \cap .]	
(e) If R is regular, then R^* is regular.	Т	F
TRUE, by closure of the class of regular languages under *.	Î.	

2. Give a *deterministic* finite automaton recognizing the language $L = \{x \in \{a, b\}^* \mid x \text{ contains an even number of } a \text{'s and an odd number of } b \text{'s}\}$. E.g., b and aaaba are in L, but abab and baaa are not. You do *not* need to give a correctness proof for your machine.

3. Consider the NFA $M = (Q, \Sigma, \delta, q_0, F)$ with the following transition diagram:

(a)	In what states might the NFA be after reading input <i>bbba</i> ?		3, 6
(b)	Does the NFA accept <i>bbba</i> ? Why or why not?	Yes, since 6 is a final s	state.
(c)	Suppose you apply the "subset" construction to build an equiva		
	What state $q \in Q'$ would M' be in after reading the input $bbba$	ي؟ {:	3,6}
(d)	Is q above in F' ? Why or why not?	Yes. It contains a final state of	f <i>M</i> .
(e)	In terms of the states of M , what is the start state of M' ? $q'_0 =$:{	1,2}
(f)	What state is $\delta'(\{2,4\},a)$? [3] $\delta'(\{2,6\},a)$?	$\{3, 6\}$ $\delta'(\{5\}, a)?$	Ø
(g)	Describe in English the language accepted by M . (Say what it	is, not how M operates.)	
	M accepts strings $x \in \{a, b\}^*$ with either		
	 the number of b's in x, and the number of b's to the left multiples of 3, or 	of every a (if any) in x are pos	itive

- 2) the number of a's in x is even.
- FYI, a corresponding regular expression would be $(bbba^*)^* \cup b^*(ab^*ab^*)^*$.
- 4. Using the construction given in the text and lecture for converting an FA to a regular expression, eliminate state number 2 (and *only* state 2) from the following GNFA. The special start- and final-states have already been added. Arrows labeled \emptyset are not shown. You may also omit them from your answer if you prefer, and you may simplify terms involving \emptyset (e.g., $x \cup y \cdot \emptyset \equiv x$), but do *not* otherwise simplify the expressions.

5. Let $L = \{x \in \{a, b\}^* \mid x \text{ contains more } a$'s than b's $\}$. Prove (using any method you wish) that L is not a regular language.

Assume *L* is regular. Let *p* be the pumping length for *L*, and let $s = a^{p}b^{p-1}$. Clearly *s* has more a's than b's, so it is in *L*, and $|s| \ge p$, so by the pumping lemma there must exist strings *x*, *y*, *z* such that $|xy| \le p$, |y| > 0, and for all $i \ge 0$, $xy^{i}z \in L$. But $xy^{0}z = a^{p-|y|}b^{p-1} \notin L$, since $p - |y| \le p - 1$. This contradicts the conclusion of the pumping lemma, and therefore *L* cannot be regular.