## Recap of Undecidability Proof

- The Question: Are there languages that are not decidable by any Turing machine (TM)?
$\Rightarrow$ I.e. Are there problems that cannot be solved by any algorithm?
- Consider the language:
$A_{T M}=\{\langle M, w\rangle \mid M$ is a TM and $M$ accepts $w\}$
(Recall that $\langle\mathrm{A}, \mathrm{B}, \ldots\rangle$ is just a string encoding the objects $\mathrm{A}, \mathrm{B}, \ldots$ )
- What can we say about $A_{T M}$ ?
$\Rightarrow \mathrm{A}_{\mathrm{TM}}$ is Turing-recognizable: Recognizer TM R for $\mathrm{A}_{\mathrm{TM}}$ : On input string $\langle\mathrm{M}, \mathrm{w}\rangle$ : Simulate M on w .
ACCEPT < M, w> if M halts \& accepts w;
REJECT <M,w> if M halts \& rejects
(Loop (\& thus reject <M,w>) if M ends up looping).
$R$ accepts $\langle M, \mathrm{w}\rangle$ iff $M$ accepts $w \Rightarrow L(R)=A_{T M}$


## Is $\mathrm{A}_{\mathrm{TM}}$ also decidable?

- No, $A_{T M}=\{\langle M, w\rangle \mid M$ is a TM and $M$ accepts $w\}$ is undecidable! 1-slide Proof (by Contradiction):

1. Assume $\mathrm{A}_{\mathrm{TM}}$ is decidable $\Rightarrow$ there's a decider $\mathrm{H}, \mathrm{L}(\mathrm{H})=\mathrm{A}_{\mathrm{TM}}$
2. H on $\langle\mathrm{M}, \mathrm{w}\rangle=\mathrm{ACC}$ if M accepts w

REJ if M rejects $w$ (halts in $\mathrm{q}_{\text {REJ }}$ or loops on $w$ )
3. Construct new TM D: On input $\langle M\rangle$, Simulate H on $\langle\mathrm{M},<\mathrm{M} \gg$ (here, $\mathrm{w}=\langle\mathrm{M}\rangle$ )
If H accepts, then REJ input <M>
If H rejects, then ACC input <M>
4. What happens when D gets $\langle\mathrm{D}\rangle$ as input?

D rejects <D> if H accepts <D, <D>> if D accepts <D>
D accepts <D> if H rejects <D, <D>> if D rejects <D>
Contradiction! D cannot exist $\Rightarrow H$ cannot exist
Therefore, $\mathrm{A}_{\mathrm{TM}}$ is not a decidable language.

## Undecidability Proof uses Diagonalization

| Input string |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $<\mathrm{M}_{1}><\mathrm{M}_{2}><\mathrm{M}_{3}>\ldots$ |  |  |  |  | $\xrightarrow[\text { exists }]{\text { If } \mathrm{H}} \mathrm{M}_{\mathrm{M}_{3}}$ | $\left\langle\mathrm{M}_{1}><\mathrm{M}_{2}><\mathrm{M}_{3}>\ldots<\mathrm{D}>\right.$ |  |  |  |  |
| List $\mathrm{M}_{1}$ | ACC | REJ | loop | $\ldots$ |  | ACC | REJ | REJ | ... | ACC |
| of $\quad \mathrm{M}_{2}$ | REJ | loop | ACC | $\ldots$ |  | REJ | REJ | ACC | $\ldots$ | ACC |
| TMs $\mathrm{M}_{3}$ | ACC | ACC | REJ | $\ldots$ |  | ACC | ACC | REJ | $\ldots$ | REJ |
| : | . | . |  |  | D outputs | . | . | . | : | : |
|  |  |  |  |  | opposite D | REJ | ACC | ACC | $\ldots$ | ?? |

D on $\left\langle\mathrm{M}_{\mathrm{i}}\right\rangle$ accepts if and only if $\mathrm{M}_{\mathrm{i}}$ on $\left\langle\mathrm{M}_{\mathrm{i}}\right\rangle$ rejects.
So, D on <D> will accept if and only if D on <D> rejects!
A contradiction $\Rightarrow \mathrm{H}$ cannot exist!

## One Last Concept: Reducibility

$\downarrow$ How do we show a new problem A is undecidable? $\Rightarrow$ Use diagonalization again? Yes, but too tedious.
$\uparrow$ Easy Proof: Show that $\mathrm{A}_{\mathrm{TM}}$ is reducible to the new problem A
$\Rightarrow$ What does this mean and how do we show this?
$\leftrightarrow$ Show that if A was decidable, then you can use the decider for A as a subroutine to decide $\mathrm{A}_{\mathrm{TM}}$ $\Rightarrow$ A contradiction, therefore A must also be undecidable

## The Halting Problem is Undecidable (Turing, 1936)

$\downarrow$ Halting Problem: Does TM M halt on input w?
$\Rightarrow$ Equivalent language: $\mathrm{A}_{\mathrm{H}}=\{\langle\mathrm{M}, \mathrm{w}\rangle \mid T M M$ halts on input w$\}$
$\Rightarrow$ Need to show $\mathrm{A}_{\mathrm{H}}$ is undecidable
$\Rightarrow$ We know $\mathrm{A}_{\text {тм }}=\{\langle\mathrm{M}, \mathrm{w}\rangle \mid$ TM M accepts w$\}$ is undecidable
$\rightarrow$ Show $\mathrm{A}_{\mathrm{TM}}$ is reducible to $\mathrm{A}_{\mathrm{H}}$ (Theorem 5.1 in text)
$\Rightarrow$ Suppose $A_{H}$ is decidable $\Rightarrow$ there's a decider $\mathrm{M}_{\mathrm{H}}$ for $\mathrm{A}_{\mathrm{H}}$
$\Rightarrow$ Then, we can construct a decider $\mathrm{D}_{\mathrm{TM}}$ for $\mathrm{A}_{\mathrm{TM}}$ : On input $\langle\mathrm{M}, \mathrm{w}\rangle$, run $\mathrm{M}_{\mathrm{H}}$ on $\langle\mathrm{M}, \mathrm{w}\rangle$.

- If $\mathrm{M}_{\mathrm{H}}$ rejects, then REJ (this takes care of M looping on w)
- If $\mathrm{M}_{\mathrm{H}}$ accepts, then simulate M on w until M halts
- If $M$ accepts, then ACC input $\langle\mathrm{M}, \mathrm{w}\rangle$; else REJ
$\mathrm{L}\left(\mathrm{D}_{\mathrm{TM}}\right)=\mathrm{A}_{\mathrm{TM}} \Rightarrow \mathrm{A}_{\mathrm{TM}}$ is decidable! Contradiction $\Rightarrow \mathrm{A}_{\mathrm{H}}$ is undecidable


## Are There Languages That Are Not Even Recognizable?

$\rightarrow \mathrm{A}_{\mathrm{TM}}$ and $\mathrm{A}_{\mathrm{H}}$ are undecidable but Turing-recognizable
$\Rightarrow$ Are there languages that are not even Turing-recognizable?

- What happens if both A and $\overline{\mathrm{A}}$ are Turing-recognizable?
$\Rightarrow$ There exist TMs M1 and M2 that recognize A and $\overline{\mathrm{A}}$
$\Rightarrow$ Can construct a decider for A! On input w:

1. Simulate M1 and M2 on w one step at a time, alternating between them.
2. If M1 accepts, then ACC w and halt; if M2 accepts, REJ w and halt.

- A and $\overline{\mathrm{A}}$ are both Turing-recognizable iff A is decidable
- Corollary: $\overline{\mathrm{A}}_{\mathrm{TM}}$ and $\overline{\mathrm{A}}_{\mathrm{H}}$ are not Turing-recognizable $\Rightarrow$ If they were, then $\mathrm{A}_{\mathrm{TM}}$ and $\mathrm{A}_{\mathrm{H}}$ would be decidable


## The Chomsky Hierarchy of Languages

| Increasing generality $\longrightarrow$ |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :---: |
| Language | Regular | Context-Free | Decidable | Turing- <br> Recognizable |  |
| Computational <br> Models | DFA, <br> NFA, <br> RegExp | PDA, | Deciders - <br> TMs that <br> halt for all <br> inputs | TMs that <br> may loop for <br> strings not in <br> language |  |
| Examples | $(0 \cup 1)^{*} 11$ | $\left\{0^{\mathrm{n}} 1^{\mathrm{n}} \mid \mathrm{n} \geq 0\right\}$, <br> Palindromes | $\left\{0^{\mathrm{n}} 1^{\mathrm{n}} 0^{\mathrm{n}}\right.$ <br> $\mathrm{n} \geq 0\}$, <br> $\mathrm{A}_{\mathrm{DFA}}$, <br> $\mathrm{A}_{\mathrm{CFG}}$ | $\mathrm{A}_{\mathrm{TM}}$, |  |

(Chomsky also studied context-sensitive languages (CSLs, e.g. $\mathrm{a}^{\mathrm{n}} \mathrm{b}^{\mathrm{n}} \mathrm{c}^{\mathrm{n}}$ ) , a subset of decidable languages recognized by linear-bounded automata (LBA))


## Final Review

- Details regarding the Final Exam
$\Rightarrow$ When: This Friday, Dec. 14, 2001 from 8:30-10:20 a.m.
$\Rightarrow$ Where: This classroom MGH 231.
$\Rightarrow$ What will it cover?
- Chapters 0-4 and Theorem 5.1 (example of reducibility)
- Emphasis will be on material covered after midterm (Chapter 2 and beyond)
* You may bring 1 page of notes ( $81 / 2$ " x 11 " sheet!)
- Approximately 6 questions
$\Rightarrow$ How do I ace it?
- Practice, practice, practice!
- See class website for practice problems


## Review of Chapters 0-1

- See Midterm Review Slides
$\Rightarrow$ Emphasis on:
- Sets, strings, and languages
- Operations on strings/languages (concat, *, union, etc)
- Lexicographic ordering of strings
- DFAs and NFAs: definitions and how they work
- Regular languages and properties
- Regular expressions and GNFAs (see lecture slides)
- Pumping lemma for regular languages and showing nonregularity


## Context-Free Grammars (CFGs)

$\mathrm{CFG} \mathrm{G}=(\mathrm{V}, \Sigma, \mathrm{R}, \mathrm{S})$
$\Rightarrow$ Variables, Terminals, Rules, Start variable
$\Rightarrow u A v$ yields uwv if A $\rightarrow w$ is a rule in G: Written as $u A v \Rightarrow u w v$
$\Rightarrow u \Rightarrow^{*} v$ if $u$ yields $v$ in 0,1 , or more steps
$\Rightarrow L(G)=\left\{w \mid S \Rightarrow^{*} w\right\}$
$\Rightarrow$ CFGs for regular languages: Convert DFA to a CFG (Create variables for states and rules to simulate transitions)

Ambiguity: Grammar G is ambiguous if G has two or more parse trees for some string w in L(G)
$\Rightarrow$ See lecture notes/text/homework for examples
$\uparrow$ Closure properties of Context-Free languages
$\Rightarrow$ Closed under $\cup$, concat, * but not $\cap$ or complementation.
$\Rightarrow$ See homework and lecture slides

## Pushdown Automata (PDA)

$\rightarrow \mathrm{PDA} \mathrm{P}=\left(\mathrm{Q}, \Sigma, \Gamma, \delta, \mathrm{q}_{0}, \mathrm{~F}\right)$
$\Rightarrow Q=$ set of states
$\Rightarrow \Sigma=$ input alphabet
$\Rightarrow \Gamma=$ stack alphabet
$\Rightarrow \mathrm{q}_{0}=$ start state
$\Rightarrow \mathrm{F} \subseteq \mathrm{Q}=$ set of accept states
$\Rightarrow$ Transition function $\delta: \mathrm{Q} \times \Sigma_{\varepsilon} \times \Gamma_{\varepsilon} \rightarrow \operatorname{Pow}\left(\mathrm{Q} \times \Gamma_{\varepsilon}\right)$
$\Rightarrow$ (current state, next input symbol, popped symbol) $\rightarrow$ \{set of (next state, pushed symbol)\}
$\Rightarrow$ Input/popped/pushed symbol can be $\varepsilon$
$\rightarrow$ Example PDAs for:

$$
\Rightarrow\left\{w \# w^{R} \mid w \in\{0,1\}^{*}\right\},\left\{w w^{R} \mid w \in\{0,1\}^{*}\right\} \text {, Palindromes }
$$

## Context-Free Languages: Main Results

- CFGs and PDAs are equivalent in computational power
$\Rightarrow$ Generate/recognize the same class of languages (CFLs)

1. If $L=L(G)$ for some $C F G G$, then $L=L(M)$ for some PDA $M$

- Know how to convert a given CFG to a PDA

2. If $\mathrm{L}=\mathrm{L}(\mathrm{M})$ for some PDA M , then $\mathrm{L}=\mathrm{L}(\mathrm{G})$ for some $\mathrm{CFG} G$

- Be familiar with the construction - no need to memorize the induction proof
- Pumping Lemma for CFLs
$\Rightarrow$ Know the exact statement: L CFL $\Rightarrow \exists$ p s.t. $\forall s$ in L s.t. $|s| \geq \mathrm{p}$, $\exists u, v, x, y$, and $z$ s.t. $s=u v x y z$ and:

1. $u v^{i} x y^{i} z \in \mathrm{~L} \forall i \geq 0$, 2. $|v y| \geq 1$, and $\quad 3 .|v x y| \leq \mathrm{p}$.

- Using the PL to show languages are not CFLs
$\Rightarrow$ E.g. $\left\{0^{n} 1^{n} 0^{n} \mid n \geq 0\right\}$ and $\left\{0^{n} \mid n\right.$ is a prime number $\}$
R. Rao, CSE 322


## Turing Machines: Definition and Operation

$\rightarrow \mathrm{TM} \mathrm{M}=\left(\mathrm{Q}, \Sigma, \Gamma, \delta, \mathrm{q}_{0}, \mathrm{q}_{\mathrm{ACC}}, \mathrm{q}_{\mathrm{REJ}}\right)$
$\Leftrightarrow \mathrm{Q}=$ set of states
$\Rightarrow \Sigma=$ input alphabet not containing blank symbol "-"
$\Rightarrow \Gamma=$ tape alphabet containing blank " "", all symbols in $\Sigma$, plus possible temporary variables such as $\mathrm{X}, \mathrm{Y}$, etc.
$\Rightarrow q_{0}=$ start state
$\Rightarrow q_{\text {ACC }}=$ accept and halt state
$\Rightarrow q_{\text {REJ }}=$ reject and halt state
$\Rightarrow$ Transition function $\delta: \mathrm{Q} \times \Gamma \rightarrow \mathrm{Q} \times \Gamma \times\{\mathrm{L}, \mathrm{R}\}$
$\uparrow \delta($ current state, symbol under the head $)=($ next state, symbol to write over current symbol, direction of head movement)
$\Rightarrow$ Configurations of a TM, definition of language $\mathrm{L}(\mathrm{M})$ of a TM M

## Decidable versus Recognizable Languages

$\star$ A language is Turing-recognizable if there is a Turing machine M such that $\mathrm{L}(\mathrm{M})=\mathrm{L}$
$\Rightarrow$ For all strings in $L, M$ halts in state $q_{A C C}$
$\Rightarrow$ For strings not in $\mathrm{L}, \mathrm{M}$ may either halt in $\mathrm{q}_{\text {REJ }}$ or loop forever

- A language is decidable if there is a "decider" Turing machine $M$ that halts on all inputs such that $L(M)=L$
$\Rightarrow$ For all strings in $L, M$ halts in state $q_{A C C}$
$\Rightarrow$ For all strings not in $L, M$ halts in state $q_{\text {REJ }}$
$\uparrow$ Showing a language is decidable by construction:
$\Rightarrow$ Implementation level description of deciders
$\Rightarrow$ E.g. $\left\{0^{n} 1^{n} 0^{n} \mid n \geq 0\right\},\left\{0^{n} \mid n=m^{2}\right.$ for some integer $\left.m\right\}$, see text


## Equivalence of TM Types \& Church-Turing Thesis

$\downarrow$ Varieties of TMs: Know the definition, operation, and idea behind proof of equivalence with standard TM
$\Rightarrow$ Multi-Tape TMs: TM with k tapes and k heads
$\Rightarrow$ Nondeterministic TMs (NTMs)

- Decider if all branches halt on all inputs
$\Rightarrow$ Enumerator TM for L: Prints all strings in L (in any order, possibly with repetitions) and only the strings in $L$
$\leftrightarrow$ Can use any of these variants for showing a language is Turing-recognizable or decidable
- Church-Turing Thesis: Any formal definition of "algorithms" or "programs" is equivalent to Turing machines


## Decidable Problems

$\uparrow$ Any problem can be cast as a language membership problem
$\Rightarrow$ Does DFA D accept input w? Equivalent to:
Is $\langle\mathrm{D}, \mathrm{w}\rangle$ in $\mathrm{A}_{\mathrm{DFA}}=\{\langle\mathrm{D}, \mathrm{w}\rangle \mid \mathrm{D}$ is a DFA that accepts input w$\}$ ?
$\uparrow$ Decidable problems concerning languages and machines:
$\Rightarrow A_{\text {DFA }}$
$\Rightarrow \mathrm{A}_{\mathrm{NFA}}=\{\langle\mathrm{N}, \mathrm{w}\rangle \mid \mathrm{N}$ is a NFA that accepts input w$\}$
$\Leftrightarrow A_{R E X}=\{\langle R, w\rangle \mid R$ is a reg. exp. that generates string $w\}$
$\Rightarrow A_{\text {empty-DFA }}=\{\langle D\rangle \mid D$ is a DFA and $L(D)=\varnothing\}$
$\Rightarrow \mathrm{A}_{\text {Equal-DFA }}=\{\langle\mathrm{C}, \mathrm{D}\rangle \mid \mathrm{C}$ and D are DFAs and $\mathrm{L}(\mathrm{C})=\mathrm{L}(\mathrm{D})\}$
$\Rightarrow A_{\mathrm{CFG}}=\{\langle\mathrm{G}, \mathrm{w}\rangle \mid \mathrm{G}$ is a CFG that generates string w$\}$
$\Rightarrow \mathrm{A}_{\text {empty-CFG }}=\{\langle\mathrm{G}\rangle \mid \mathrm{G}$ is a CFG and $\mathrm{L}(\mathrm{G})=\varnothing\}$

## Undecidability, Reducibility, Unrecognizability

$\rightarrow A_{T M}=\{\langle M, w\rangle \mid M$ is a TM and $M$ accepts $w\}$ is Turingrecognizable but not decidable (Proof by diagonalization)
$\checkmark$ To show a problem A is undecidable, reduce $\mathrm{A}_{\text {TM }}$ to A
$\Rightarrow$ Show that if A was decidable, then you can use the decider for A as a subroutine to decide $\mathrm{A}_{\text {т }}$
$\Rightarrow$ E.g. Halting problem = "Does a program halt for an input or go into an infinite loop?"
$\Rightarrow$ Can show that the Halting problem is undecidable by reducing $\mathrm{A}_{\mathrm{TM}}$ to $\mathrm{A}_{\mathrm{H}}=\{\langle\mathrm{M}, \mathrm{w}\rangle \mid \mathrm{TM} \mathrm{M}$ halts on input w$\}$
$\rightarrow$ A is decidable iff A and $\overline{\mathrm{A}}$ are both Turing-recognizable
$\Rightarrow$ Corollary: $\overline{\mathrm{A}}_{\mathrm{TM}}$ and $\overline{\mathrm{A}}_{\mathrm{H}}$ are not Turing-recognizable


