
1R. Rao, CSE 322

What’s on our platter for today?

✦ An example of a decidable language that is not a CFL
➭ Implementation-level description of a TM
➭ State diagram of TM

✦ Varieties of TMs
➭ Multi-Tape TMs
➭ Nondeterministic TMs
➭ String Enumerators

✦ Closure properties

✦ Church-Turing Thesis:
“Algorithm” ≡ Turing Machine

This will
�rap up
Chap 3

2R. Rao, CSE 322

Example of a non-CF decidable language

✦ We know L = {0n1n0n | n ≥ 0} is not a CFL (pumping lemma)

✦ Show L is decidable
➭ Construct a decider M such that L(M) = L
➭ A decider is a TM that always halts (in qacc or qrej) and is

guaranteed not to go into an infinite loop for any input

3R. Rao, CSE 322

Initial Idea for a Decider for {0n1n0n | n ≥ 0}

✦ General Idea: Match each 0 with a 1 and a 0 following the 1.
✦ Implementation Level Description of a Decider for L:

On input w:
1. If first symbol = blank, ACCEPT
2. If first symbol = 1, REJECT
3. If first symbol = 0, Write a blank to mark left end of tape

a. If current symbol is 0 or X, skip until it is 1. REJECT if blank.
b. Write X over 1. Skip 1’s/X’s until you see 0. REJECT if blank.
c. Write X over 0. Move back to left end of tape.

4. At left end: Skip X’s until:
a. You see 0: Write X over 0 and GOTO 3a
b. You see 1: REJECT
c. You see a blank space: ACCEPT

4R. Rao, CSE 322

Seems okay…

✦ Try running the decider on:
➭ 010, 001100, … ! ACCEPT

➭ 0, 000, 0100, … ! REJECT

q0 qskip0 qskip1 qgo-left

qat-left
qACCqREJ

0→_,R 1→X,R 0→X,L

_→R0→X,R

_→R

_→R1→R

X→R
0→R

X→R
1→R

X→L
0→L
1→L

X→R

5R. Rao, CSE 322

BUT…

Houston, we have a
problem with our
Turing machine…

6R. Rao, CSE 322

What’s the problem?

✦ Try running the decider on:
➭ 010010, 010001100 ! ACCEPT!!!

Need to fix it…

Maybe
it’s that
GOTO?

E. W. Dijkstra

q0 qskip0 qskip1 qgo-left

qat-left
qACCqREJ

0→_,R 1→X,R 0→X,L

_→R0→X,R

_→R

_→R1→R

X→R
0→R

X→R
1→R

X→L
0→L
1→L

X→R

7R. Rao, CSE 322

An Aside: Dijsktra on GOTOs

Opening sentence of: “Go To Statement Considered Harmful” by
Edsger W. Dijkstra, Letter to the Editor, Communications of the
ACM, Vol. 11, No. 3, March 1968, pp. 147-148.

“For a number of years I have been familiar
with the observation that the quality of

programmers is a decreasing function of the
density of go to statements in the programs

they produce.”

8R. Rao, CSE 322

✦ Scan initially to make sure string is of the form 0*1*0*

✦ On input w:
1. If first symbol = blank, ACCEPT
2. If first symbol = 1, REJECT
3. If first symbol = 0: if w is not in 00*11*00*, REJECT; else,

Write a blank to mark left end of tape
a. If current symbol is 0 or X, skip until it is 1. REJECT if blank.
b. Write X over 1. Skip 1’s/X’s until you see 0. REJECT if blank.
c. Write X over 0. Move back to left end of tape.

4. At left end: Skip X’s until:
a. You see 0: Write X over 0 and GOTO 3a
b. You see 1: REJECT
c. You see a blank space: ACCEPT

A Simple Fix (to the Decider)

Add this

9R. Rao, CSE 322

The Decider TM for L in all its glory

q0

qskip0 qskip1 qgo-left

qat-left
qACC

qREJ

0→_,R

1→X,R 0→X,L

_→R0→X,R

_→R

_→R

1→R
X→R
0→R X→R

1→R
X→L
0→L
1→L

X→R

q1
1→R q2

0→R q3

0→R 1→R 0→R

_→L
1→R

qREJ

New part tests
for 00*11*00*

qREW

0→L
1→L

_→R

10R. Rao, CSE 322

Varieties of TMs

What if we
allow

nondeterminism
?

What if we
allow multiple

tapes?

What if I
take nap?

11R. Rao, CSE 322

Various Types of TMs

✦ Multi-Tape TMs: TM with k tapes and k heads
➭ δ: Q × Γk → Q × Γk × {L,R}k

➭ δ(qi, a1, …, ak) = (qj, b1, …, bk, L, R, …, L)

✦ Nondeterministic TMs (NTMs)
➭ δ: Q × Γ → Pow(Q × Γ × {L,R})
➭ δ(qi, a) = {(q1, b, R), (q2, c, L), …, (qm, d, R)}

✦ Enumerator TM for L: Prints all strings in L (in any order,
possibly with repetitions) and only the strings in L

✦ Other types: TM with Two-way infinite tape, TM with
multiple heads on a single tape, 2D infinite tape TM,
Random Access Memory (RAM) TM, etc.

12R. Rao, CSE 322

Surprise!
All TMs are born equal…

✦ Each of the preceding TMs is equivalent to the standard TM
➭ They recognize the same set of languages (the Turing-

recognizable languages)

✦ Proof idea: Simulate the “deviant” TM using a standard TM

✦ Example 1: Multi-tape TM on a standard TM
➭ Represent k tapes sequentially on 1 tape using separators #
➭ Use new symbol a to denote a head currently on symbol a

0 1

b a h

3 2 2

≡ # 0 1 # b a h # 3 2 2 #

(See text for details)

13R. Rao, CSE 322

Simulating Nondeterminism

✦ Any nondeterministic TM N can be
simulated by a deterministic TM M

✦ N accepts w iff there is at least 1 path in
N’s tree for w ending in qACC

✦ General proof idea: Simulate each
branch sequentially

✦ Proof idea 1: Use depth first search?
➭ No, might go deep into an infinite branch

and never explore other branches!

✦ Proof idea 2: Use breadth first search
➭ Explore all branches at depth n before n+1

q0

(q1, a, R) (q2, b, L)

qREJ

qACC

This branch does
not halt

14R. Rao, CSE 322

Simulating Nondeterminism: Details, Details

✦ Use a 3-tape DTM M for breadth-
first traversal of N’s tree on w:
➭ Tape 1 keeps the input string w
➭ Tape 2 stores N’s tape during

simulation along 1 path (given by
tape 3) up to a particular depth,
starting with w

➭ Tape 3 stores current path number
E.g. ε = root node q0
213 = path made up of 3rd child of

1st child of 2nd child of root

✦ See text for more details

q0

(q1, a, R) (q2, b, L)

qREJ

qACC

Does
not halt

213

15R. Rao, CSE 322

Closure Properties of Decidable Languages

✦ Decidable languages are closed under ∪, °, *, ∩, and
complement

✦ Example: Closure under ∪
✦ Need to show that union of 2 decidable L’s is also decidable

Let M1 be a decider for L1 and M2 a decider for L2
A decider M for L1 ∪ L2:

On input w:
1. Simulate M1 on w. If M1 accepts, then ACCEPT w. Otherwise,

go to step 2 (because M1 has halted and rejected w)
2. Simulate M2 on w. If M2 accepts, ACCEPT w else REJECT w.

M accepts w iff M1 accepts w OR M2 accepts w
i.e. L(M) = L1 ∪ L2

16R. Rao, CSE 322

Closure Properties of Decidable Languages

✦ Example: Closure under ∪
Let M1 be a decider for L1 and M2 a decider for L2
A decider M for L1 ∪ L2:

On input w:
1. Simulate M1 on w. If M1 accepts, then ACCEPT w. Otherwise,

go to step 2 (because M1 has halted and rejected w)
2. Simulate M2 on w. If M2 accepts, ACCEPT w else REJECT w.

M accepts w iff M1 accepts w OR M2 accepts w
i.e. L(M) = L1 ∪ L2

Will this proof work for showing Turing-recognizable languages
are closed under ∪? Why/Why not?

Uh…I dunno.
Wait, will M1
always halt?!

17R. Rao, CSE 322

Closure for Recognizable Languages

✦ Turing-Recognizable languages are closed under ∪, °, *, and ∩
(but not complement! We will see this later in Chapter 4)

✦ Example: Closure under ∩
Let M1 be a TM for L1 and M2 a TM for L2 (both may loop)
A TM M for L1 ∩ L2:

On input w:
1. Simulate M1 on w. If M1 halts and accepts w, go to step 2. If

M1 halts and rejects w, then REJECT w. (If M1 loops, then M
will also loop and thus reject w)

2. Simulate M2 on w. If M2 halts and accepts, ACCEPT w. If M2
halts and rejects, then REJECT w. (If M2 loops, then M
will also loop and thus reject w)

M accepts w iff M1 accepts w AND M2 accepts w i.e. L(M) = L1∩L2

18R. Rao, CSE 322

That wraps up Chapter 3!
Next 2 Classes: Undecidable Problems
Now: Fill out student evals

Look, Ma,
I’m on CSE

322!
Always thought
he was nuts…

