What’s on our platter for today?

- An example of a decidable language that is not a CFL
 - Implementation-level description of a TM
 - State diagram of TM
- Varieties of TMs
 - Multi-Tape TMs
 - Nondeterministic TMs
 - String Enumerators
- Closure properties
- Church-Turing Thesis:
 “Algorithm” = Turing Machine

This will ‘rap up Chap 3

Example of a non-CF decidable language

- We know \(L = \{0^n1^n0^n \mid n \geq 0 \} \) is not a CFL (pumping lemma)
- Show \(L \) is decidable
 - Construct a decider \(M \) such that \(L(M) = L \)
 - A decider is a TM that always halts (in \(q_{\text{acc}} \) or \(q_{\text{rej}} \)) and is guaranteed not to go into an infinite loop for any input
Initial Idea for a Decider for \(\{0^n1^n0^n \mid n \geq 0\} \)

✦ General Idea: Match each 0 with a 1 and a 0 following the 1.
✦ Implementation Level Description of a Decider for L:

On input w:
1. If first symbol = blank, ACCEPT
2. If first symbol = 1, REJECT
3. If first symbol = 0, Write a blank to mark left end of tape
 a. If current symbol is 0 or X, skip until it is 1. REJECT if blank.
 b. Write X over 1. Skip 1’s/X’s until you see 0. REJECT if blank.
 c. Write X over 0. Move back to left end of tape.
4. At left end: Skip X’s until:
 a. You see 0: Write X over 0 and GOTO 3a
 b. You see 1: REJECT
 c. You see a blank space: ACCEPT

Seems okay…

Try running the decider on:
- 010, 001100, … ➔ ACCEPT
- 0, 000, 0100, … ➔ REJECT
BUT…

Houston, we have a problem with our Turing machine…

What’s the problem?

✦ Try running the decider on:
 010010, 010001100 \rightarrow \text{ACCEPT}!!!
 Need to fix it…

Maybe it’s that GOTO?
An Aside: Dijkstra on GOTOs

“For a number of years I have been familiar with the observation that the quality of programmers is a decreasing function of the density of go to statements in the programs they produce.”

A Simple Fix (to the Decider)

- Scan initially to make sure string is of the form 0*1*0*
- On input w:
 1. If first symbol = blank, ACCEPT
 2. If first symbol = 1, REJECT
 3. If first symbol = 0: if w is not in 00*11*00*, REJECT; else, Write a blank to mark left end of tape
 a. If current symbol is 0 or X, skip until it is 1. REJECT if blank.
 b. Write X over 1. Skip 1’s/X’s until you see 0. REJECT if blank.
 c. Write X over 0. Move back to left end of tape.
 4. At left end: Skip X’s until:
 a. You see 0: Write X over 0 and GOTO 3a
 b. You see 1: REJECT
 c. You see a blank space: ACCEPT
The Decider TM for L in all its glory

Varieties of TMs

What if we allow multiple tapes?

What if we allow nondeterminism?

What if I take nap?
Various Types of TMs

✦ Multi-Tape TMs: TM with k tapes and k heads
 \[\delta : Q \times \Gamma^k \rightarrow Q \times \Gamma^k \times \{L,R\}^k \]
 \[\delta(q_i, a_1, \ldots, a_k) = (q_j, b_1, \ldots, b_k, L, R, \ldots, L) \]

✦ Nondeterministic TMs (NTMs)
 \[\delta : Q \times \Gamma \rightarrow \text{Pow}(Q \times \Gamma \times \{L,R\}) \]
 \[\delta(q_i, a) = \{(q_1, b, R), (q_2, c, L), \ldots, (q_m, d, R)\} \]

✦ Enumerator TM for L: Prints all strings in L (in any order, possibly with repetitions) and only the strings in L

✦ Other types: TM with Two-way infinite tape, TM with multiple heads on a single tape, 2D infinite tape TM, Random Access Memory (RAM) TM, etc.

Surprise!
All TMs are born equal…

✦ Each of the preceding TMs is equivalent to the standard TM
 \[\Rightarrow \text{They recognize the same set of languages (the Turing-recognizable languages)} \]

✦ Proof idea: Simulate the “deviant” TM using a standard TM

✦ Example 1: Multi-tape TM on a standard TM
 \[\Rightarrow \text{Represent } k \text{ tapes sequentially on } 1 \text{ tape using separators } \# \]
 \[\Rightarrow \text{Use new symbol } a \text{ to denote a head currently on symbol } a \]

\[
\begin{array}{c}
0 1 \ldots \ldots \ldots \ldots \\
\uparrow \\
b a h \ldots \ldots \ldots \ldots \\
\uparrow \\
3 2 2 \ldots \ldots \ldots \\
\uparrow
\end{array} \equiv
\begin{array}{c}
\# 0 1 \# b a h \# 3 2 2 \# \ldots \ldots \\
\uparrow
\end{array}
\]

(See text for details)
Simulating Nondeterminism

- Any nondeterministic TM N can be simulated by a deterministic TM M.
- N accepts w iff there is at least 1 path in N’s tree for w ending in q_{ACC}.
- General proof idea: Simulate each branch sequentially.
- Proof idea 1: Use depth first search?
 - No, might go deep into an infinite branch and never explore other branches!
- Proof idea 2: Use breadth first search
 - Explore all branches at depth n before $n+1$.

Simulating Nondeterminism: Details, Details

- Use a 3-tape DTM M for breadth-first traversal of N’s tree on w:
 - Tape 1 keeps the input string w.
 - Tape 2 stores N’s tape during simulation along 1 path (given by tape 3) up to a particular depth, starting with w.
 - Tape 3 stores current path number.
 - E.g. $\varepsilon = \text{root node } q_0$.
 - $213 = \text{path made up of 3rd child of 1st child of 2nd child of root}$.
- See text for more details.
Closure Properties of Decidable Languages

- Decidable languages are closed under \cup, $^\circ$, \ast, \cap, and complement

- Example: Closure under \cup

- Need to show that union of 2 decidable L’s is also decidable

 Let M_1 be a decider for L_1 and M_2 a decider for L_2

 A decider M for $L_1 \cup L_2$:

 On input w:

 1. Simulate M_1 on w. If M_1 accepts, then ACCEPT w. Otherwise, go to step 2 (because M_1 has halted and rejected w)

 2. Simulate M_2 on w. If M_2 accepts, ACCEPT w else REJECT w.

 M accepts w iff M_1 accepts w OR M_2 accepts w

 i.e. $L(M) = L_1 \cup L_2$

Closure Properties of Decidable Languages

- Example: Closure under \cup

 Let M_1 be a decider for L_1 and M_2 a decider for L_2

 A decider M for $L_1 \cup L_2$:

 On input w:

 1. Simulate M_1 on w. If M_1 accepts, then ACCEPT w. Otherwise, go to step 2 (because M_1 has halted and rejected w)

 2. Simulate M_2 on w. If M_2 accepts, ACCEPT w else REJECT w.

 M accepts w iff M_1 accepts w OR M_2 accepts w

 i.e. $L(M) = L_1 \cup L_2$

Will this proof work for showing Turing-recognizable languages are closed under \cup? Why/Why not?

Uh…I dunno.

Wait, will M_1 always halt?!
Closure for Recognizable Languages

✦ Turing-Recognizable languages are closed under \cup, \circ, \ast, and \cap (but not complement! We will see this later in Chapter 4)

✦ Example: Closure under \cap
 Let M_1 be a TM for L_1 and M_2 a TM for L_2 (both may loop)
 A TM M for $L_1 \cap L_2$:
 On input w:
 1. Simulate M_1 on w. If M_1 halts and accepts w, go to step 2. If M_1 halts and rejects w, then REJECT w. (If M_1 loops, then M will also loop and thus reject w)
 2. Simulate M_2 on w. If M_2 halts and accepts, ACCEPT w. If M_2 halts and rejects, then REJECT w. (If M_2 loops, then M will also loop and thus reject w)
 M accepts w iff M_1 accepts w AND M_2 accepts w i.e. $L(M) = L_1 \cap L_2$

R. Rao, CSE 322

That wraps up Chapter 3!
Next 2 Classes: Undecidable Problems
Now: Fill out student evals

Look, Ma, I’m on CSE 322!

Always thought he was nuts…