CSE 322 Lecture 3: Review of Proof Techniques

- **♦** Last Time:
 - Proof by counterexample: Give an example that disproves the given statement
 - Proof by contradiction: Assume statement is false and show that it leads to a contradiction
 - \Rightarrow Proof of set equality A=B: Show $A\subseteq B$ and $B\subseteq A$
- ◆ Today (and beyond):
 - \Rightarrow Proof of "X iff Y" (or X \Leftrightarrow Y) statements
 - Proof by construction
 - Proof by induction
 - ⇒ "Bird-based" techniques: Pigeonhole principle and Dovetailing
 - CS Theoretician's favorite: Diagonalization

R. Rao, CSE 322

Proof Techniques II: The Big picture

- Proving "X iff Y" statements: Prove X ⇒ Y ("X only if Y") and Y ⇒ X ("X if Y")
 - \Rightarrow Example: For all real numbers x, show $\lfloor x \rfloor = \lceil x \rceil$ iff $x \in \mathbb{Z}$
- Proof by construction: Show that a statement can be satisfied by constructing an object using what is given
 ⇒ Example: Show that for all c, ∃ n₀ s.t. n² > cn for all n ≥ n₀
- **Proof by induction** (very common in CS Theory): 2 steps –
- Basis Step: Show statement is true for some finite value n₀, typically n₀ = 0
- Induction hypothesis and induction step: Assume statement is true for some fixed but arbitrary n ≥ n₀. Show it is also true for n + 1
- \Rightarrow Example: Show that for all $n \ge 0$, 1 + 2 + ... + n = n(n+1)/2

R. Rao, CSE 322 2

The "Avian" Techniques

- ◆ Pigeonhole principle: If A and B are finite sets and |A| > |B|, then there is no one-to-one function from A to B
 - \Rightarrow f : A \rightarrow B is one-to-one if for any distinct x, y \in A, f(x) \neq f(y)
 - ⇒ <u>Idea</u>: "more pigeons than pigeonholes" → at least one pigeonhole contains two pigeons. Prove by <u>induction</u> on |B|
 - ⇒ E.g. In a room of 13 or more people, at least 2 have same birthmonth
- ◆ Dovetailing: Useful for showing union of any finite or countably infinite collection of countably infinite sets is again countably infinite
 - ⇒ A is countably infinite if there is a 1-1 correspondence ("bijection") between N (the set of natural numbers) and A
 - ⇒ E.g. Use dovetailing to show Z and N × N are both countably infinite

Rao, CSE 322 3

Next Class: Enter the finite automaton...

- ♦ Next time:
 - ❖ Infinite sets that are not countably infinite (diagonalization)
 - ⇒ Finite automata 101
- ◆ Things to do over the weekend:
 - ⇒ Browse course website
 - Sign up for mailing list (instructions on website)
 - ⇒ Finish Chapter 0 and start Chapter 1
 - Start (and finish?) homework #1

R. Rao, CSE 322 4