
1R. Rao, CSE 322

What’s on our plate today?

✦ Cliff’s notes for equivalence of CFLs and L(PDAs)
➭ L is a CFL ⇒ L = L(M) for some PDA M
➭ L = L(M) for some PDA M ⇒ L = L(G) for some CFG G

✦ Pumping Lemma (one last time)
➭ Statement of Pumping Lemma for CFLs
➭ Proof: See class notes from last time and textbook
➭ Application: Showing a given L is not a CFL

✦ Introduction to Turing Machines

2R. Rao, CSE 322

From CFLs to PDAs

✦ L is a CFL ⇒ L = L(M) for some PDA M
✦ Proof Summary:

➭ L is a CFL means L = L(G) for some CFG G = (V, Σ, R, S)
➭ Construct PDA M = (Q, Σ, Γ, δ, q0, {qacc})

M has only 4 main states (plus a few more for pushing strings)
Q = {q0, q1, q2, qacc} ∪ E where E are states used in 2 below

➭ δ has 4 components:
1. Init. Stack: δ(q0, ε, ε) = {(q1, $)} and δ(q1, ε, ε) = {(q2, S)}
2. Push & generate strings: δ(q2, ε, A) = {(q2, w)} for A→w in R
3. Pop & match to input: δ(q2, a,a) = {(q2, ε)}
4. Accept if stack empty: δ(q2, ε, $) = {(qacc, ε)}

✦ Can prove by induction: w ∈ L iff w ∈ L(M)

3R. Rao, CSE 322

From PDAs to CFLs

✦ L = L(M) for some PDA M ⇒ L = L(G) for some CFG G

✦ Proof Summary: Simulate M’s computation using a CFG
➭ First, simplify M: 1. Only 1 accept state, 2. M empties stack

before accepting, 3. Each transition either Push or Pop, not
both or neither. Let M = (Q, Σ, Γ, δ, q0, {qacc})

➭ Construct grammar G = (V, Σ, R, S)
➭ Basic Idea: Define variables Apq for simulating M
➭ Apq generates all strings w such that w takes M from state p

with empty stack to state q with empty stack
➭ Then, Aq0qacc generates all strings w accepted by M

4R. Rao, CSE 322

From PDAs to CFLs (cont.)

✦ L = L(M) for some PDA M ⇒ L = L(G) for some CFG G

✦ Proof (cont.)
➭ Construct grammar G = (V, Σ, R, S) where

V = {Apq | p, q ∈ Q)
S = Aq0qacc

R = {Apq→ aArsb | p r s q}

∪ {Apq→ Apr Arq | p, q, r ∈ Q}

∪ {Aqq→ ε | q ∈ Q}

✦ See text for proof by induction: w ∈ L(M) iff w ∈ L(G)

✦ Try to get G from M where L(M) = {0n1n | n ≥ 1}

a, ε → c b, c → εArs

5R. Rao, CSE 322

Pumping Lemma for CFLs

✦ Intuition: If L is CF, then some CFG G produces strings in L
➭ If some string in L is very long, it will have a very tall parse tree
➭ If a parse tree is taller than the number of distinct variables in G,

then some variable A repeats ⇒ A will have at least two sub-trees
➭ We can pump up the original string by replacing A’s smaller sub-

tree with larger, and pump down by replacing larger with smaller

✦ Pumping Lemma for CFLs in all its glory:
➭ If L is a CFL, then there is a number p (the “pumping length”) such that

for all strings s in L such that |s| ≥ p, there exist u, v, x, y, and z such that
s = uvxyz and:

1. uvixyiz ∈ L for all i ≥ 0, and
2. |vy| ≥ 1, and
3. |vxy| ≤ p.

Here we
go again!s

v y

6R. Rao, CSE 322

Why is the PL useful?

✦ Can use the pumping lemma to show a language L is not
context-free
➭ 5 steps for a proof by contradiction:
1. Assume L is a CFL.
2. Let p be the pumping length for L given by the pumping

lemma for CFLs.
3. Choose cleverly an s in L of length at least p, such that
4. For all possible ways of decomposing s into uvxyz,

where |vy| ≥ 1 and |vxy| ≤ p,
5. We can choose an i ≥ 0 such that uvixyiz is not in L.

✦ In-Class Examples: Show the following are not CFLs
➭ L = {0n1n0n | n ≥ 0} and L = {0n | n is a prime number}

Yawn…yes,
why indeed?

7R. Rao, CSE 322

Using the Pumping Lemma

✦ Show L = {0n | n is a prime number} is not a CFL
1. Assume L is a CFL.
2. Let p be the pumping length for L given by the pumping

lemma for CFLs.
3. Let s = 0n where n is a prime ≥ p
4. Consider all possible ways of decomposing s into uvxyz, where

|vy| ≥ 1 and |vxy| ≤ p.
Then, vy = 0r and uxz = 0q where r + q = n and r ≥ 1

5. We need an i ≥ 0 such that uvixyiz = 0ir+q is not in L.
(i = 0 won’t work because q could be prime: e.g. 2 + 17 = 19)
Choose i = (q + 2 + 2r). Then, ir + q = qr + 2r +2r2+q =
q(r+1)+2r(r+1) = (q+2r)(r+1) = not prime (since r ≥ 1).

So, 0ir+q is not in L ⇒ contradicts pumping lemma. L is not a CFL.

8R. Rao, CSE 322

Two cool results about CFLs

✦ CFLs are not closed under intersection
➭ Proof: L1 = {0n1n0m | n, m ≥ 0} and L2 = {0m1n0n | n, m ≥ 0}

are both CFLs but L1∩L2 = {0n1n0n | n ≥ 0} is not a CFL.

✦ CFLs are not closed under complementation
➭ Proof by contradiction:

Suppose CFLs are closed under complement.

Then, for L1, L2 above, L1∪ L2 must be a CFL (since CFLs are
closed under ∪ -- see homework #5, problem 1).

But, L1∪ L2 = L1∩L2 (by de Morgan’s law).

L1∩L2 = {0n1n0n | n ≥ 0} is not a CFL ⇒ contradiction.

Therefore CFLs are not closed under complementation.

Oh boy…
Jolly good

9R. Rao, CSE 322

Can we make PDAs more powerful?

✦ PDA = NFA +

✦ What if we allow arbitrary reads/writes to the stack
instead of only push and pop?

10R. Rao, CSE 322

Enter….Turing Machines!

Just like a DFA except:
➭ You have an infinite “tape” memory (or scratchpad) on which you

receive your input and on which you can do your calculations
➭ You can read 1 symbol at a time from a cell on the tape, write 1

symbol, then move the read/write pointer (head) left (L) or right (R)

11R. Rao, CSE 322

Who’s Turing?

✦ Alan Turing (1912-1954): one of the
most brilliant mathematicians of the
20th century (one of the founding
“fathers” of computing)

✦ Click on “Theory Hall of Fame” link
on class web under “Lectures”

✦ Introduced the Turing machine as a
formal model of what it means to
compute and solve a problem (i.e. an
“algorithm”)
➭ Paper: On computable numbers,

with an application to the
Entscheidungsproblem, Proc.
London Math. Soc. 42 (1936).

12R. Rao, CSE 322

How do Turing Machines compute?

✦ δ(current state, symbol under the head) = (next state, symbol
to write over current symbol, direction of head movement)

✦ Diagram shows: δ(q0,1) = (q1, 0, R) (R = right, L = left)

✦ In terms of “Configurations”: 11q0110 ⇒ 110q110

Blank part of tape

13R. Rao, CSE 322

Solving Problems with Turing Machines

✦ We know L = {0n1n0n | n ≥ 0} cannot be accepted by any
PDA

✦ Design a Turing Machine (TM) that accepts L
➭ Write down its operation in words…

14R. Rao, CSE 322

Next Time…

✦ Formal definition of TMs

✦ Solving problems with TMs

✦ Varieties of TMs (multi-tape, nondeterministic, etc.)

✦ Homework #5 due on Friday!

Can I have
my Oscar now?

