What’s on our plate today?

✦ Cliff’s notes for equivalence of CFLs and L(PDAs)
 ➤ L is a CFL ⇒ L = L(M) for some PDA M
 ➤ L = L(M) for some PDA M ⇒ L = L(G) for some CFG G

✦ Pumping Lemma (one last time)
 ➤ Statement of Pumping Lemma for CFLs
 ➤ Proof: See class notes from last time and textbook
 ➤ Application: Showing a given L is not a CFL

✦ Introduction to Turing Machines

From CFLs to PDAs

✦ L is a CFL ⇒ L = L(M) for some PDA M

✦ Proof Summary:
 ➤ L is a CFL means L = L(G) for some CFG G = (V, Σ, R, S)
 ➤ Construct PDA M = (Q, Σ, Γ, δ, q_0, {q_{acc}})
 M has only 4 main states (plus a few more for pushing strings)
 Q = {q_0, q_1, q_2, q_{acc}} \cup E where E are states used in 2 below
 ➤ δ has 4 components:
 1. Init. Stack: δ(q_0, ε, ε) = {(q_1, $)} and δ(q_1, ε, ε) = {(q_2, S)}
 2. Push & generate strings: δ(q_2, ε, A) = {(q_2, w)} for A → w in R
 3. Pop & match to input: δ(q_2, a, a) = {(q_2, ε)}
 4. Accept if stack empty: δ(q_2, ε, $) = {(q_{acc}, ε)}

✦ Can prove by induction: w ∈ L iff w ∈ L(M)
From PDAs to CFLs

- \(L = L(M) \) for some PDA \(M \) \(\Rightarrow \) \(L = L(G) \) for some CFG \(G \)
- Proof Summary: Simulate \(M \)'s computation using a CFG
 - First, simplify \(M \): 1. Only 1 accept state, 2. \(M \) empties stack before accepting, 3. Each transition either Push or Pop, not both or neither. Let \(M = (Q, \Sigma, \Gamma, \delta, q_0, \{ q_{acc} \}) \)
 - Construct grammar \(G = (V, \Sigma, R, S) \)
 - Basic Idea: Define variables \(A_{pq} \) for simulating \(M \)
 - \(A_{pq} \) generates all strings \(w \) such that \(w \) takes \(M \) from state \(p \) with empty stack to state \(q \) with empty stack
 - Then, \(A_{q0qacc} \) generates all strings \(w \) accepted by \(M \)

From PDAs to CFLs (cont.)

- \(L = L(M) \) for some PDA \(M \) \(\Rightarrow \) \(L = L(G) \) for some CFG \(G \)
- Proof (cont.)
 - Construct grammar \(G = (V, \Sigma, R, S) \) where
 \[
 V = \{ A_{pq} | p, q \in Q \} \\
 S = A_{q0qacc} \\
 R = \{ A_{pq} \rightarrow aA_{rs}b | p, q \in Q \} \\
 \cup \{ A_{pq} \rightarrow A_{ps}A_{rq} | p, q, r \in Q \} \\
 \cup \{ A_{qq} \rightarrow \epsilon | q \in Q \} \\
 \]
 - See text for proof by induction: \(w \in L(M) \) iff \(w \in L(G) \)
 - Try to get \(G \) from \(M \) where \(L(M) = \{ 0^n1^n | n \geq 1 \} \)
Pumping Lemma for CFLs

✦ Intuition: If \(L \) is CF, then some CFG \(G \) produces strings in \(L \)
 ➤ If some string in \(L \) is very long, it will have a very tall parse tree
 ➤ If a parse tree is taller than the number of distinct variables in \(G \),
 then some variable \(A \) repeats ⇒ \(A \) will have at least two sub-trees
 ➤ We can pump up the original string by replacing \(A \)’s smaller sub-
 tree with larger, and pump down by replacing larger with smaller

✦ Pumping Lemma for CFLs in all its glory:
 ➤ If \(L \) is a CFL, then there is a number \(p \) (the “pumping length”) such that
 for all strings \(s \) in \(L \) such that \(|s| \geq p \), there exist \(u, v, x, y, \) and \(z \) such that
 \(s = uvxyz \) and:
 1. \(uv^ixyz \in L \) for all \(i \geq 0 \), and
 2. \(|vy| \geq 1 \), and
 3. \(|vxy| \leq p \).

R. Rao, CSE 322

Why is the PL useful?

✦ Can use the pumping lemma to show a language \(L \) is not context-free
 ➤ 5 steps for a proof by contradiction:
 1. Assume \(L \) is a CFL.
 2. Let \(p \) be the pumping length for \(L \) given by the pumping
 lemma for CFLs.
 3. Choose cleverly an \(s \) in \(L \) of length at least \(p \), such that
 4. For all possible ways of decomposing \(s \) into \(uvxyz \),
 where \(|vy| \geq 1 \) and \(|vxy| \leq p \),
 5. We can choose an \(i \geq 0 \) such that \(uv^ixy^iz \) is not in \(L \).

✦ In-Class Examples: Show the following are not CFLs
 ➤ \(L = \{0^n1^n0^n \mid n \geq 0 \} \) and \(L = \{0^n \mid n \) is a prime number\}
Using the Pumping Lemma

✦ Show $L = \{0^n \mid n \text{ is a prime number}\}$ is not a CFL
 1. Assume L is a CFL.
 2. Let p be the pumping length for L given by the pumping lemma for CFLs.
 3. Let $s = 0^n$ where n is a prime $\geq p$
 4. Consider all possible ways of decomposing s into $uvxyz$, where $|vy| \geq 1$ and $|vxy| \leq p$.

Then, $vy = 0^r$ and $uxz = 0^q$ where $r + q = n$ and $r \geq 1$

5. We need an $i \geq 0$ such that $uv^ixy^iz = 0^{ir+q}$ is not in L.

$(i = 0$ won’t work because q could be prime: e.g. $2 + 17 = 19)$
Choose $i = (q + 2r)$. Then, $ir + q = qr + 2r + 2r^2 + q = q(r+1)+2r(r+1) = (q+2r)(r+1) = \text{not prime (since } r \geq 1)$.

So, 0^{ir+q} is not in $L \Rightarrow$ contradicts pumping lemma. L is not a CFL.

Two cool results about CFLs

✦ CFLs are not closed under intersection
 ➤ **Proof**: $L_1 = \{0^n1^n0^n \mid n, m \geq 0\}$ and $L_2 = \{0^n1^n0^n \mid n, m \geq 0\}$
 are both CFLs but $L_1 \cap L_2 = \{0^n1^n0^n \mid n \geq 0\}$ is not a CFL.

✦ CFLs are not closed under complementation
 ➤ **Proof by contradiction**:
 Suppose CFLs are closed under complement.

 Then, for L_1, L_2 above, $\overline{L_1 \cup L_2 = L_1 \cap \overline{L_2}}$ must be a CFL (since CFLs are closed under \cup -- see homework #5, problem 1).

 But, $\overline{L_1 \cup L_2 = L_1 \cap L_2}$ (by de Morgan’s law).

 $L_1 \cap \overline{L_2} = \{0^n1^n0^n \mid n \geq 0\}$ is not a CFL \Rightarrow contradiction.

 Therefore CFLs are not closed under complementation.
Can we make PDAs more powerful?

✦ PDA = NFA +

✦ What if we allow arbitrary reads/writes to the stack instead of only push and pop?

Enter….Turing Machines!

Just like a DFA except:
- You have an infinite “tape” memory (or scratchpad) on which you receive your input and on which you can do your calculations
- You can read 1 symbol at a time from a cell on the tape, write 1 symbol, then move the read/write pointer (head) left (L) or right (R)
Who’s Turing?

✦ Alan Turing (1912-1954): one of the most brilliant mathematicians of the 20th century (one of the founding “fathers” of computing)

✦ Click on “Theory Hall of Fame” link on class web under “Lectures”

✦ Introduced the Turing machine as a formal model of what it means to compute and solve a problem (i.e. an “algorithm”)

How do Turing Machines compute?

✦ \(\delta(q_0, 1) = (q_1, 0, R) \) (R = right, L = left)

✦ In terms of “Configurations”: 11q_0110 \(\Rightarrow \) 110q_110
Solving Problems with Turing Machines

✦ We know $L = \{0^n1^n0^n \mid n \geq 0\}$ cannot be accepted by any PDA
✦ Design a Turing Machine (TM) that accepts L
 ✔ Write down its operation in words…

Next Time…

✦ Formal definition of TMs
✦ Solving problems with TMs
✦ Varieties of TMs (multi-tape, nondeterministic, etc.)
✦ Homework #5 due on Friday!

Can I have my Oscar now?