CSE 322

Introduction to Formal Models in Computer Science
 Pumping Lemma for CFL's

CFL Pumping Lemma: If L is a context-free language then there is a constant n (depending on L) such that for all $w \in L$ with $|w| \geq n, w$ can be written as $w=u v x y z$ such that

1. $|v x y| \leq n$,
2. $|v|+|y| \geq 1$, and
3. for all $i \geq 0, u v^{i} x y^{i} z \in L$.

Proof: Let $G=(V, \Sigma, R, S)$ be a context-free grammar generating L. Let ℓ be the length of the longest right side of any rule in R. Let $k=|V-\Sigma|, n=\ell^{k+1}$ and suppose that $w \in L$ with $|w| \geq n$. Consider the smallest parse tree T_{w} for w. By the choice of ℓ we know that the fan-out of any node in T_{w} is at most ℓ. Now any tree of fan-out ℓ and height h has at most ℓ^{h} leaves. Therefore we know that T_{w} has height at least $k+1$ and therefore has some root-leaf path with at least $k+1$ interior vertices. Consider the longest such path and consider the labels of the lowest $k+1$ interior vertices on this path. All these labels are non-terminals and since $|V-\Sigma|=k$, one of these labels must appear twice. Call this non-terminal A. Thus we can break up T_{w} and choose u, v, x, y, and z as in the following figure:

We now need to argue that (1), (2), (3) hold.
(1) is true because the higher A generates $v w x$ and this A has height at most $k+1$ and therefore the subtree below it has at most $\ell^{k+1}=n$ leaves.
(2) says that v and y are not both e. This must be true because T_{w} was chosen to be minimal to begin with. If $v=y=e$ then we can get a smaller tree by replacing the subtree below the higher A by the subtree below the second one.
To show (3) we note that

$$
S \underset{G}{\stackrel{*}{\Rightarrow}} u A z \underset{G}{\stackrel{*}{\Rightarrow}} u v A y z \underset{G}{\stackrel{*}{\Rightarrow}} u v x y z=w
$$

and this implies that (a) $A \underset{G}{\stackrel{*}{\Rightarrow}} v A y$ and (b) $A \underset{G}{\stackrel{*}{\Rightarrow}} x$. We first show that for all $i \geq 0, S \underset{G}{\stackrel{*}{\Rightarrow}} u v^{i} A y^{i} z$ by induction on i and then conclude that $S \underset{G}{\stackrel{*}{\Rightarrow}} u v^{i} w y^{i} z$ using derivation (b).
Base Case: $S \underset{G}{\stackrel{*}{\Rightarrow}} u A z=u v^{0} A y^{0} z$.
Induction Step: Suppose that $S \underset{G}{\stackrel{*}{\Rightarrow}} u v^{i} A y^{i} z$. Then $S \underset{G}{\stackrel{*}{\Rightarrow}} u v^{i} A y^{i} z \underset{G}{\stackrel{*}{\Rightarrow}} u v^{i} v A y y^{i} z=u v^{i+1} A y^{i+1} z$ using derivation (a).

As a result we have $u v^{i} w y^{i} z \in L$ for all $i \geq 0$ and (3) is proved.
Slightly Stronger CFL Pumping Lemma: If L is a context-free language then there is a constant n (depending on L) such that for all $w \in L$ with $|w| \geq n, w$ can be written as $w=u v x y z$ such that

1. $|v x y| \leq n$,
2. $v \neq e$, and
3. for all $i \geq 0, u v^{i} x y^{i} z \in L$.

Proof: The only difference here is that the condition $|v|+|y| \geq 1$ is replaced by $v \neq e$. Apply the CFL Pumping Lemma above to get $w=u v x y z$ such that $|v x y| \leq n,|v|+|y| \geq 1$ and v and y can be jointly pumped. If $v \neq e$ we are done. Otherwise if $v=e$, then $w=u x y z$ and pumping v and y jointly implies that $u x y^{i} z \in L$ for all $i \geq 0$. In this case we set $u_{n e w}=u x, v_{n e w}=y \neq e, x_{n e w}=e, y_{n e w}=e$, and $z_{\text {new }}=z$. It is easy to check now that all the conditions are satisfied for these new values.

