CSE 322 Introduction to Formal Models in Computer Science Pumping Lemma for CFL's

CFL Pumping Lemma: If L is a context-free language then there is a constant n (depending on L) such that for all $w \in L$ with $|w| \ge n$, w can be written as w = uvxyz such that

- 1. $|vxy| \leq n$,
- 2. $|v| + |y| \ge 1$, and
- 3. for all $i \ge 0$, $uv^i xy^i z \in L$.

Proof: Let $G = (V, \Sigma, R, S)$ be a context-free grammar generating L. Let ℓ be the length of the longest right side of any rule in R. Let $k = |V - \Sigma|$, $n = \ell^{k+1}$ and suppose that $w \in L$ with $|w| \ge n$. Consider the smallest parse tree T_w for w. By the choice of ℓ we know that the fan-out of any node in T_w is at most ℓ . Now any tree of fan-out ℓ and height h has at most ℓ^h leaves. Therefore we know that T_w has height at least k + 1 and therefore has some root-leaf path with at least k + 1 interior vertices. Consider the longest such path and consider the labels of the lowest k + 1 interior vertices on this path. All these labels are non-terminals and since $|V - \Sigma| = k$, one of these labels must appear twice. Call this non-terminal A. Thus we can break up T_w and choose u, v, x, y, and z as in the following figure:

We now need to argue that (1), (2), (3) hold.

(1) is true because the higher A generates vwx and this A has height at most k + 1 and therefore the subtree below it has at most $\ell^{k+1} = n$ leaves.

(2) says that v and y are not both e. This must be true because T_w was chosen to be minimal to begin with. If v = y = e then we can get a smaller tree by replacing the subtree below the higher A by the subtree below the second one.

To show (3) we note that

$$S \stackrel{*}{\underset{G}{\Rightarrow}} uAz \stackrel{*}{\underset{G}{\Rightarrow}} uvAyz \stackrel{*}{\underset{G}{\Rightarrow}} uvxyz = w$$

and this implies that (a) $A \stackrel{*}{\underset{G}{\Rightarrow}} vAy$ and (b) $A \stackrel{*}{\underset{G}{\Rightarrow}} x$. We first show that for all $i \ge 0$, $S \stackrel{*}{\underset{G}{\Rightarrow}} uv^i Ay^i z$ by induction on i and then conclude that $S \stackrel{*}{\underset{G}{\Rightarrow}} uv^i wy^i z$ using derivation (b).

Base Case: $S \stackrel{*}{\underset{G}{\Rightarrow}} uAz = uv^0 Ay^0 z$.

Induction Step: Suppose that $S \stackrel{*}{\Rightarrow}_{G} uv^{i}Ay^{i}z$. Then $S \stackrel{*}{\Rightarrow}_{G} uv^{i}Ay^{i}z \stackrel{*}{\Rightarrow}_{G} uv^{i}vAyy^{i}z = uv^{i+1}Ay^{i+1}z$ using derivation (a).

As a result we have $uv^i wy^i z \in L$ for all $i \ge 0$ and (3) is proved.

Slightly Stronger CFL Pumping Lemma: If L is a context-free language then there is a constant n (depending on L) such that for all $w \in L$ with $|w| \ge n$, w can be written as w = uvxyz such that

- 1. $|vxy| \leq n$,
- 2. $v \neq e$, and
- 3. for all $i \ge 0$, $uv^i xy^i z \in L$.

Proof: The only difference here is that the condition $|v| + |y| \ge 1$ is replaced by $v \ne e$. Apply the CFL Pumping Lemma above to get w = uvxyz such that $|vxy| \le n$, $|v| + |y| \ge 1$ and v and y can be jointly pumped. If $v \ne e$ we are done. Otherwise if v = e, then w = uxyz and pumping v and y jointly implies that $uxy^iz \in L$ for all $i \ge 0$. In this case we set $u_{new} = ux$, $v_{new} = y \ne e$, $x_{new} = e$, $y_{new} = e$, and $z_{new} = z$. It is easy to check now that all the conditions are satisfied for these new values. \Box