CSE 321 Discrete Structures

February 1st, 2010 Lecture 12: Integer Division

Outline

Quickly review set theory (see Lecture 6)

The integers and division: read Rosen 3.4

Andrew will discuss a homework problem

Announcement: Practice midterms will be posted later today

Number Theory (and applications to computing)

- Branch of Mathematics with direct relevance to computing
- Many significant applications
 - Cryptography
 - Hashing
 - Security
- Important tool set

Divisibility

Let a, b be two integers, and a $\neq 0$. a <u>divides</u> b if there exists an integer c s.t. a*c = b

Notation: a | b

Divisbility

The Division "Algorithm". If a, d are integers and d > 0, then there exists unique q, r s.t.

(a)
$$0 \le r \le d$$
 and

(b)
$$a = d*q + r$$

$$q = a div d$$

$$r = a \mod d$$

Primality

- An integer p is <u>prime</u> if its only divisors are 1 and p
- An integer that is greater than 1, and not prime is called <u>composite</u>

Fundamental theorem of arithmetic: Every positive integer greater than one has a unique prime factorization

Factorization

 If n is composite, it has a factor of size at most sqrt(n)

Euclid's theorem

There are an infinite number of primes.

Proof by contradiction:

- Suppose there are a finite number of primes: p₁, p₂, . . . p_n
- Consider the number p=1 + p₁p₂...p_n
 - Case 1: p is prime; contradiction
 - Case 2: p is not prime. Then it must be divisible by a prime number; but none of p₁, p₂, . . . p_n; contradiction

Greatest Common Divisor

- GCD(a, b): Largest integer d such that d|a and d|b
- GCD(100, 125) =
- GCD(17, 49) =
- GCD(11, 66) =

Key properties:

- express GCD in terms of the prime factors
- GCD(a,b) = GCD(a-b, b) when a > b
- GCD(a,b) = GCD(r, b) when a mod b = r

Euclid's Algorithm

• $GCD(x, y) = GCD(y, x \mod y)$

```
int GCD(int a, int b) { /* a \ge b, b \ge 0 */
   int tmp; int x = a; int y = b;
   while (y > 0)
                        % means mod in Java
      tmp = x \% y;
      x = y;
      y = tmp;
   return x;
                How many steps? In class...
                 (Ch.4.3, "Lame's Theorem")
```

Euclid's Algorithm

 A variant which uses only addition/ subtraction (no multiplication/division)

```
int GCD(int a, int b) {
  int x = a; int y = b;

while (x != y) {
  if (x > y) x -= y;
  else y -= x;
  }
  return x;
}
```

Extended Euclid's Algorithm

 If GCD(x, y) = d, there exist integers s, t, such sx + ty = d;

```
int × int EGCD(int a, int b) { /* returns (s,t) */
    if (a == b) return (1,0);
    if (a>b) { (s,t) = EGCD(a-b, b);
        return (s, t-s); }
    else { (s,t) = EGCD(a, b-a);
        return (s-t, t); }
}
Prove correctness in class
```