CSE 321 Discrete Structures

February 1st, 2010
Lecture 12: Integer Division



Outline

* Quickly review set theory (see Lecture 6)
* The integers and division: read Rosen 3.4

* Andrew will discuss a homework problem

Announcement: Practice midterms will be posted later to

Jay




Number Theory (and applications
to computing)

« Branch of Mathematics with direct
relevance to computing
* Many significant applications
— Cryptography
— Hashing
— Security
* Important tool set



Divisibility

Let a, b be two integers, and a #O0.
a divides b 1f there exists an integer ¢ s.t. a*c=b

Notation: a | b




Divisbility

The Division “Algorithm™. If a, d are integers
and d > 0, then there exists unique q, r s.t.

(a)0<r<dand
(bya=d*q+r
a = dividend _
d = divisor q=adivd
g = quotient
r = reminder r=amodad




Primality

* An integer p is prime if its only divisors are
1and p

* An integer that is greater than 1, and not
prime is called composite

Fundamental theorem of arithmetic:
Every positive integer greater than one
has a unique prime factorization




Factorization

 If nis composite, it has a factor of size at
most sqrt(n)



Euclid’s theorem

There are an infinite number of primes.

Proof by contradiction:

* Suppose there are a finite number of
primes: p4, Ps, - - - Py

» Consider the number p=1 + p,p,. . .p,
— Case 1: p is prime; contradiction

— Case 2: pis not prime. Then it must be
divisible by a prime number; but none of p,,
Py, - - - P,y CONtradiction



Greatest Common Divisor

GCD(a, b): Largest integer d such that d|a
and d|b

GCD(100, 125) =
GCD(17, 49) =
GCD(11, 66) =

Key properties:
« express GCD in terms of the prime factors
« GCD(a,b) = GCD(a-b, b) whena>Db
« GCD(a,b) = GCD(r, b) when amodb =r




Euclid’s Algorithm
« GCD(x, y) = GCD(y, x mod vy)

int GCD(int a, intb){ /*a>=b, b>0%*/
inttmp; Iintx=a; inty=b;

while (y > 0){ 2% means mod in Java}
tmp=x % y;
X=Y,
y = tmp;

h IS

return x;
} How many steps ? In class...
— (Ch.4.3, “"Lame’s Theorem”)




Euclid’s Algorithm

A variant which uses only addition/
subtraction (no multiplication/division)

int GCD(int a, int b) {
intx=a; inty=b;

while (x !=y){

if (x>y)x-=y;
else y = x;

)

return Xx;

j




Extended Euclid’'s Algorithm

« If GCD(X, y) = d, there exist integers s, {,
such sx + ty = d;

int X int EGCD(int a, int b){ /* returns (s,t) */
if (a =="D) return (1,0);
if (a>b) { (s,t) = EGCD(a-b, b);

return (s, t-s); } e
else { (s,t) = EGCD(a, b-a); Prove correctness
return (s-t, t); } in class
)




