CSE 321 Discrete Structures

January 29, 2010 Lecture 10: Program Correctness

Announcements

- Homework #4 will be posted tomorrow
 - Slightly shorter, because of the midterm
- Midterm: Friday in class (1:30-2:30)
- Makeup midterm: Wednesday, Feb. 3, CSE 503, 3:30pm-4:30pm
 - If you plan to take the midterm on Wednesday, please send me email in advance
 - (Backup: 4:30-5:30; hopefully we won't need)

What to Study for the Midterm

Read ALL lecture notes

Read ALL handouts

Review the homework solutions

Rosen: read chapters 1, 4, 7.1, and 7.2

Binary Search

```
/* assume a[0] \le a[1] \le ... \le a[n-1] */
/* find i in the array a[]: */
/* either find i such that a[i] = x */
/* or find i such that a[i] < x < a[i+1] */
```

Simplified Binary Search

We will assume first that $a[0] \le x$

```
int i = 0; int j = n;
while (i+1 < j) {
    int k = (i + j) / 2;
    if (x < a[k]) j = k;
    if (x >= a[k]) i = k;
}
```

Simplified Binary Search

Precondition:

$$a[0] \le x \land a[n] = \infty \land$$

 $\forall u, v \in \{0..n-1\}. u < v \rightarrow a[u] \le a[v]$

Postcondition:

$$i+1=j \land a[i] \leq x < a[j]$$

Proof (Assuming $a[0] \le x$)

Loop invariant:

(precondition)
$$\land$$
 i < j \land a[i] \leq x < a[j]

(Prove partial correctness on the white board)

Binary Search

Now we drop the assumption that $a[0] \le x$

```
int i = -1; int j = n;
while (i+1 < j) {
    int k = (i + j) / 2;
    if (x <= a[k]) j = k;
    if (x >= a[k]) i = k;
}
```

Binary Search

Precondition:

$$a[-1] = -\infty \land a[n] = \infty \land$$

 $\forall u, v \in \{0..n-1\}. u < v \rightarrow a[u] \le a[v]$

Postcondition:

$$(i+1=j \land a[i] < x < a[j]) \lor (i=j \land a[i]=x)$$

Proof

Loop invariant:

(precondition)
$$\land$$

(i\land a[i] < x < a[j]) \lor (i=j \land a[i]=x)

(Prove partial correctness on the white board)