CSE 321 Discrete Structures

January 13, 2010
Lecture 05
Predicate Calculus and Applications

On the Whiteboard

* Translate from English to predicate calculus
(see handout nested-quantifiers.txt)

* Renaming quantified variables:
Vv x. P(x) Vy. P(y)
3 x. P(x) Jy. P(y)

« Whatis: Vx. (P(x) A 3x.T(x)) ?

Natural Deduction

« Existential quantifier:
— Introduction
— Elimination
* Universal quantifier:
— Introduction
— Elimination
* Plus two “informal” rules
— Replace equals with equals
— Rename bound variables whenever needed

Pushing Negations Past Quantifiers

VvV X. 7 P(x)

73 X. P(X)

3 x. 7 P(x)

TV X. P(X)

—3x. Vy. 3z. (PXxy) V Q(y,2)) = ?

Bounded Quantifiers

Suppose we want to restrict x just to D:

3 x. (D(x) A P(x))

V X. (D(x) =2 P(x))

What are these sentences when D 1s empty ?

Universal Quantifier over Empty
Domain

V X. (D(x) =2 P(x))

What are these sentences when D 1s empty ?

All flying pigs have titanium tails

True or false ?

Quantifiers over Finite Domains

Suppose the domain has only three elements: a, b, c.

What are the following sentences ?

3 x. P(X)

Vv X. P(X)

Quantifiers over Finite Domains

Suppose the domain has only three elements: a, b, c.

What are the following sentences ?

Ix. P(x) = P(a) V P(b) V P(c)

v x. P(x) = P(a) A P(b) A P(c)

Intuitionistic v.s. Classical Proofs

* Intuitionistic proofs requires:

Whenever you prove p Vg, you must either
prove p, or must prove q.

o Similarly:

Whenever your prove 3 Xx. P(x) you must find
some constant a such that you prove P(a)

* Also known as “constructive proof”

A Nonconstructive Proof

Prove that there exists an irrational
number x such that x'2is rational

Let P(x) be the statement
P(x) = “x is irrational and x*2is rational”

Want to prove 3 x. P(x).
Let: a=+2, b=a"2, c=Db"

Then ¢ = b¥2= (212)2= y2V2¥2= 2 2= 2 js rational
Law of the excluded middle

(b is rational) V (b is irrational)

Case 1. If b is rational, then P(a) is true; hence 3 x. P(x).
Case 2. If b is irrational, then P(b) is true hence 3 x. P(x).

Hence: A x. P(x)

We have proven P(a) V P(b), without proving P(a) or P(b)

Proofs and Truth

 \What is the connection between
proofs and truth ?

Kurt Godel: 1906-1978

Godel's completeness theorem

Godel’s incompleteness theorem

1/13/2010 CSE 321 Winter 2010 -- Dan Suciu 12

Proofs and Truth

In propositional calculus

— A tautology is a formula that is true for any interpretation of
the propositional symbols

In predicate calculus

— A tautology is a formula that is true for any interpretation of
the predicate symbols

Q: how do we check if P is a tautology (“theorem?) ?
A: we prove it, - P

Proofs and Truth

* Denote P if “there exists a proof of P”

SOUNDNESS THEOREM.
If -~ P, then P is a tautology.

COMPLETENESS THEOREM.
If P is a tautology, then - P

Godel’'s completeness theorem

Proofs and Truthg,....

Positive Integers

* Now consider ONLY positive integers, and
ONLY standard predicates: +, -, *, /, <, >, ...

* Suppose a sentence p is true. Can we
proveit, - P 7?

INCOMPLETENESS. For any proof system
that is “reasonable”, there exists a sentence
P over positive integers s.t. P iIs true, and - P

Natural deduction Godel’'s incompleteness theorem
IS “reasonable”

Goldbach’s Conjecture

* Every even integer greater than two can

be expressed as the sum of two primes

. - B D In:
NAAZROAS S A=) ngi]tia\llre] Integers

Ju. x=u+u

Prime(x)
Even(x)

Goldbach = ¥x. (x> 2 A Even(x)) 2
(Jy.3z. (Prime(y) A Prime(z) A y+z=x))

Is “Goldbach” a tautology ?
If 1t 1s true over positive integers, will we

find a proof in Natural Deduction ?

Quantifiers and Nested Loops
Denote [0..n-1] = {0,1,...,n-1}

Given arrays a[m], b[n], c[p], write programs fragments
that check the following properties

Vi e [0.m-1]. V] € [0..n-1].
dk. € [0..p-1]. (a[i]+b[j]=c[K])

Quantifiers and Nested Loops

Vi € [0..m-1]. V] € [0..n-1]. 3k. € [0..p-1]. (a[i]+b[j]=c[k])

Boolean f = true;
for (int 1 = 0; 1 < m; 1i++)
for (int j = 0; J < n; Jj++)
{ Boolean g = false;
for (int k = 0; k < p; k+t+)
if (a[i] + b[j] == c[k]) g = true;
if (!g) £ = false;
}

if (f) System.out.println("YES");
else System.out.println("NO");

12/7010 ACE 291 \Wintar ONAN . PNan Cririn

Reusing Variables

Ix3dy3z3iu3dwv.
((alx]=blyl) A(clyl=d[z]) A (e[z]=F [u]) A (glu]=h[V]))

3 x.(3Jy.(a[x]=b[y] A
3 x.(c[y]=d[x] A
Jy (e[x]=FLy] A
3 x (9ly]=h[x])))))

This seems clever. Can we put 1t to practical use ?

Reusing Variables

Ix3dy3z3iu3dwv.
((alx]=blyl) A(clyl=d[z]) A (e[z]=F [u]) A (glu]=h[V]))

Boolean f = false;
for (int x = 0; x < n; x++) - :
for (int y = 0; y < n; y+t) n° iterations
for (int z = 0; z < n; z++)
for (int u = 0; u < n; u++)
for (int v = 0; v < n; v++)
if(a[x]==b[yl&&c[y]==d[z]&&e[z]==f[u]&&g[u]==h[V])
f=true;

Reusing Variables

I x.(3y.(a[x]=b[y] A
3 x.(c[y]=d[x] A

Ely(eii' :ii AA
/

t3[y] = Ax (glyl=h[x])

Reusing Variables

Boolean f = false;
for (int x=0; x < n; x++) { tl[x]=f; t2[x]=f; t3[x]=f; }

for (int x = 0; x < n; x++)
for (int y = 0; y < n; y++)
if (g[u]==h[V]) t3[y]l=true;

for (int x = 0; x < n; x++)
for (int y = 0; y < n; y++)
if (e[x]==f[Vv] && t3[y]) t2[x]=true;

for (int x = 0; X < n; xX++) 4 X n2 Iteratl(—)ns

for (int y = 0; y < n; y++)
if (c[y]l==d[x] && t2[x]) tl[y]=true;

for (int x = 0; x < n; xX++)
for (int y = 0; y < n; y++)
if (a[x]==b[y] && tl[y]) f=true;

