CSE 321 Discrete Structures

January 13, 2010

Lecture 05

Predicate Calculus and Applications

On the Whiteboard

 Translate from English to predicate calculus (see handout nested-quantifiers.txt)

Renaming quantified variables:

$$\forall x. P(x) \equiv \forall y. P(y)$$

$$\exists x. P(x) \equiv \exists y. P(y)$$

• What is: $\forall x. (P(x) \land \exists x.T(x))$?

Natural Deduction

- Existential quantifier:
 - Introduction
 - Elimination
- Universal quantifier:
 - Introduction
 - Elimination
- Plus two "informal" rules
 - Replace equals with equals
 - Rename bound variables whenever needed

Pushing Negations Past Quantifiers

$$\neg \exists x. P(x) \equiv \forall x. \neg P(x)$$

$$\neg \forall x. P(x) \equiv \exists x. \neg P(x)$$

$$\neg \exists x. \forall y. \exists z. (P(x,y) \lor Q(y,z)) \equiv ?$$

Bounded Quantifiers

Suppose we want to restrict x just to D:

$$\exists x. (D(x) \land P(x))$$

$$\forall x. (D(x) \rightarrow P(x))$$

What are these sentences when D is empty?

Universal Quantifier over Empty Domain

$$\forall x. (D(x) \rightarrow P(x))$$

What are these sentences when D is empty?

All flying pigs have titanium tails

True or false?

Quantifiers over Finite Domains

Suppose the domain has only three elements: a, b, c.

What are the following sentences?

$$\forall x. P(x)$$

Quantifiers over Finite Domains

Suppose the domain has only three elements: a, b, c.

What are the following sentences?

$$\exists x. P(x) \equiv P(a) \lor P(b) \lor P(c)$$

$$\forall x. P(x) \equiv P(a) \land P(b) \land P(c)$$

Intuitionistic v.s. Classical Proofs

Intuitionistic proofs requires:

Whenever you prove $p \lor q$, you must either prove p, or must prove q.

Similarly:

Whenever your prove $\exists x. P(x)$ you must find some constant a such that you prove P(a)

Also known as "constructive proof"

A Nonconstructive Proof

Prove that there exists an irrational number x such that $x^{\sqrt{2}}$ is rational

Let P(x) be the statement P(x) = "x is irrational and
$$x^{\sqrt{2}}$$
 is rational"

• Want to prove $\exists x. P(x)$.

Let:
$$a = \sqrt{2}$$
, $b = a^{\sqrt{2}}$, $c = b^{\sqrt{2}}$

- Then $c = b^{\sqrt{2}} = (\sqrt{2^{\sqrt{2}}})^{\sqrt{2}} = \sqrt{2^{\sqrt{2}}} = \sqrt{2^2} = 2$ is rational
- Law of the excluded middle

(b is rational) V (b is irrational)

- Case 1. If b is rational, then P(a) is true; hence ∃x. P(x).
- Case 2. If b is irrational, then P(b) is true hence ∃x. P(x).

Hence: $\exists x. P(x)$

We have proven $P(a) \vee P(b)$, without proving P(a) or P(b)

Proofs and Truth

 What is the connection between proofs and truth?

Kurt Gödel: 1906-1978

Gödel's completeness theorem

Gödel's incompleteness theorem

Proofs and Truth

- In propositional calculus
 - A tautology is a formula that is true for any interpretation of the propositional symbols
- In predicate calculus
 - A tautology is a formula that is true for any interpretation of the predicate symbols
- Q: how do we check if P is a tautology ("theorem")?
- A: we prove it, ⊢ P

Proofs and Truth

Denote ⊢ P if "there exists a proof of P"

SOUNDNESS THEOREM.

If ⊢ P, then P is a tautology.

COMPLETENESS THEOREM.

If P is a tautology, then ⊢ P

Gödel's completeness theorem

Proofs and Truth Domain:

Domain: Positive Integers

- Now consider ONLY positive integers, and ONLY standard predicates: +, -, *, /, <, >, ...
- Suppose a sentence p is true. Can we prove it, ⊢ P?

INCOMPLETENESS. For any proof system that is "reasonable", there exists a sentence P over positive integers s.t. P is true, and ⊬ P

Natural deduction is "reasonable"

Gödel's incompleteness theorem

Goldbach's Conjecture

 Every even integer greater than two can be expressed as the sum of two primes

```
Prime(x) \equiv \forall y. \forall z. (y*z=x \rightarrow (y=1 \forall y=x))
Even(x) \equiv \exists u. x=u+u
```

Domain: Positive Integers

```
Goldbach \equiv \forall x. (x > 2 \land Even(x)) \rightarrow (\exists y. \exists z. (Prime(y) \land Prime(z) \land y+z=x))
```

Is "Goldbach" a tautology?

If it is true over positive integers, will we find a proof in Natural Deduction?

Quantifiers and Nested Loops

Denote $[0..n-1] = \{0,1,...,n-1\}$

Given arrays a[m], b[n], c[p], write programs fragments that check the following properties

$$\forall i \in [0..m-1]. \ \forall j \in [0..n-1].$$

 $\exists k. \in [0..p-1]. (a[i]+b[j]=c[k])$

Quantifiers and Nested Loops

 $\forall i \in [0..m-1]. \ \forall j \in [0..n-1]. \ \exists k. \in [0..p-1]. \ (a[i]+b[j]=c[k])$

```
Boolean f = true;
for ( int i = 0; i < m; i++ )
    for ( int j = 0; j < n; j++ )
     { Boolean g = false;
         for ( int k = 0; k < p; k++ )
          if (a[i] + b[j] == c[k]) g = true;
              if (!q) f = false;
if (f) System.out.println("YES");
else System.out.println("NO");
```

```
\exists x \exists y \exists z \exists u \exists v.
((a[x]=b[y]) \land (c[y]=d[z]) \land (e[z]=f[u]) \land (g[u]=h[v]))
```

```
\exists x.(\exists y.(a[x]=b[y] \land \exists x.(c[y]=d[x] \land \exists y(e[x]=f[y] \land \exists x(g[y]=h[x]))))
```

This seems clever. Can we put it to practical use?

```
\exists x \exists y \exists z \exists u \exists v.
((a[x]=b[y])\land (c[y]=d[z])\land (e[z]=f[u])\land (g[u]=h[v]))
```

```
Boolean f = false;
for ( int x = 0; x < n; x++ )
  for ( int y = 0; y < n; y++ )
  for ( int z = 0; z < n; z++ )
  for ( int u = 0; u < n; u++ )
    for ( int v = 0; v < n; v++ )
     if(a[x]==b[y]&&c[y]==d[z]&&e[z]==f[u]&&g[u]==h[v])
        f=true;</pre>
```

```
\exists x.(\exists y.(a[x]=b[y] \land
             \exists x.(c[y]=d[x] \land
                    \exists y(e[x]=f[v] \land
                    \exists x (g[y]=h[x])))))
                  t3[y] = \exists x (g[y]=h[x])
```

```
Boolean f = false;
for (int x=0; x < n; x++) { t1[x]=f; t2[x]=f; t3[x]=f; }
for ( int x = 0; x < n; x++ )
 for ( int y = 0; y < n; y++ )
      if (q[u]==h[v]) t3[y]=true;
for ( int x = 0; x < n; x++ )
 for ( int y = 0; y < n; y++ )
      if (e[x]==f[v] \&\& t3[y]) t2[x]=true;
                                        4 \times n^2 iterations
for ( int x = 0; x < n; x++ )
 for ( int y = 0; y < n; y++ )
      if (c[y]==d[x] \&\& t2[x]) t1[y]=true;
for ( int x = 0; x < n; x++ )
 for ( int y = 0; y < n; y++ )
       if (a[x]==b[y] \&\& t1[y]) f=true;
```