321 Section, Week 9

Natalie Linnell

What is the probability that when we randomly select a permutation of the 26 lowercase letters of the alphabet, that the first 13 are in alphabetical order?

Let E be the event that a randomly generated bit string of length 3 contains an odd number of 1 s and let F be the event that the string starts with 1. Are E and F independent?

When a test for steroids is given to soccer players, 98% of the players taking steroids test positive and $.5 \%$ of the players not taking steroids test positive. Suppose that 5\% of soccer players take steroids. What is the probability that a soccer player who tests positive takes steroids?

What is the expected sum of the numbers that appear on two dice, each biased so that a 3 comes up twice as often as each other number?

Suppose we roll a die until it comes up 6 or we have rolled it 10 times. What is the expected number of times we roll the die?

Is R reflexive, symmetric, antisymmetric, transitive, if

- $R=\{(x, y) \mid x y \geq 1\}$
- $R=\{(x, y) \mid x$ and y are both negative or both nonnegative\}
- $R=\left\{(x, y) \mid x \geq y^{2}\right\}$

> Let R, S over RxR be $R=\{(a, b) \mid a>b\}, S=\{(a, b) \mid a \geq b\}$

- What is $S \circ R$?
- What is S o S ?

Draw the matrix representation of $R=\{(1,2),(2,1),(2,2),(3,3)\}$

How many nonzero entries does the matrix representing the relation R on

$$
A=\{1,2, \ldots, 100\} \text { have }
$$

- $R=\{(a, b) \mid a>b\}$
- $R=\{(a, b) \mid a!=b\}$
- $R=\{(a, b) \mid a=b+1\}$
- $R=\{(a, b) \mid a=1\}$
- $R=\{(a, b) \mid a b=1\}$

$$
\begin{gathered}
\quad \text { Draw the digraph for } \\
R=\{(2,4),(3,1),(3,2),(3,4)\}
\end{gathered}
$$

$$
\begin{gathered}
\text { Draw the digraph for } \\
R=\{(1,1),(1,4),(2,2),(3,3),(4,1)\}
\end{gathered}
$$

