321 Section, Feb. 14

Natalie Linnell

Every restaurant serves a food that no one likes

Every restaurant that serves TOFU also serves a food which RANDY does not like.

There is some restaurant that serves some food that everyone likes

$\exists r \forall p \exists f(\operatorname{Serves}(r, f) \wedge \operatorname{Likes}(p, f))$

$\forall r \exists p \forall f(\operatorname{Serves}(r, f) \rightarrow \operatorname{Likes}(p, f))$

Prove that if n is even and m is odd, then $(n+1)(m+1)$ is even

Prove by induction on the number of decimal digits in a that $a \equiv$ digitsum(a) $(\bmod 9)$

Use strong induction to show that a rectangular $2 n \times 2 m$ checkerboard with two squares missing, one white and one black, can be covered with dominoes.

Multiply two matrices

Use structural induction to show that $\mathrm{a} \leq 2 \mathrm{~b}$ whenever (a, b) in S

- Basis: $(0,0)$ in S
- Recursion: If (a, b) in S, then $(a, b+1)$ in $S,(a+1, b+1)$ in $S,(a+2, b+1)$ in S

Use structural induction to show that for a full binary tree $T, n(T) \geq 2 h(T)+1$

- $n(T)=n\left(T_{1}\right)+n\left(T_{2}\right)+1$
- $h(T)=\max \left(h\left(T_{1}\right), h\left(T_{2}\right)\right)+1$

Give a recursive definition of the set of positive odd integers

Give a recursive definition of w^{i}, where w is a string, and i is a nonnegative integer

Give a recursive definition of

$S=\left\{(a, b) \mid a\right.$ in Z^{+}, b in Z^{+}, and $a+b$ is even $\}$

Use structural recursion to prove that all elements of S have even sum.

Use structural induction to prove that $l(w v)=I(w)+l(v)$

- Definition of the set of strings
- Basis: λ in Σ^{*} (empty string)
- Recursion: win Σ^{*}, then wx in Σ^{*}
- Definition of $\mathrm{I}(\mathrm{w})$
- Basis: $I(\lambda)=0$
- Recursion: $\mathrm{I}(\mathrm{wx})=\mathrm{l}(\mathrm{w})+1$

